如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,16),D(24,0),點(diǎn)B在第一象限,且AB
∥x軸,BD=20,動(dòng)點(diǎn)P從原點(diǎn)O開(kāi)始沿y軸正半軸以每秒4個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),過(guò)點(diǎn)P作x軸的平行線與BD交于點(diǎn)C;動(dòng)點(diǎn)Q從點(diǎn)A開(kāi)始沿線段AB-BD以每秒8個(gè)單位長(zhǎng)的速度向點(diǎn)D勻速運(yùn)動(dòng),設(shè)點(diǎn)P、Q同時(shí)開(kāi)始運(yùn)動(dòng)且時(shí)間為t(t>0),當(dāng)點(diǎn)P與點(diǎn)A重合時(shí)停止運(yùn)動(dòng),
點(diǎn)Q也隨之停止運(yùn)動(dòng).
(1)求點(diǎn)B的坐標(biāo)及BD所在直線的解析式;
(2)當(dāng)t為何值時(shí),點(diǎn)Q和點(diǎn)C重合?
(3)當(dāng)點(diǎn)Q在AB上(包括點(diǎn)B)運(yùn)動(dòng)時(shí),求S
△PQC與t的函數(shù)關(guān)系式;
(4)若∠PQC=90°時(shí),求t的值.