【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點(diǎn)D,連接AD、過點(diǎn)D作DE⊥AC,垂足為點(diǎn)E,交AB的延長線于點(diǎn)F.
(1)求證:EF是⊙O的切線;
(2)求證:△FDB∽△FAD;
(3)如果⊙O的半徑為5,sin∠ADE=,求BF的長.
【答案】(1)證明見解析(2)證明見解析(3)
【解析】
試題分析:(1)連接OD,AB為⊙0的直徑得∠ADB=90°,由AB=AC,根據(jù)等腰三角形性質(zhì)得AD平分BC,即DB=DC,則OD為△ABC的中位線,所以O(shè)D∥AC,而DE⊥AC,則OD⊥DE,然后根據(jù)切線的判定方法即可得到結(jié)論;
(2)利用兩角對應(yīng)相等的兩三角形相似進(jìn)行證明即可.
(3)由∠DAC=∠DAB,根據(jù)等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可計算出AD=8,在Rt△ADE中可計算出AE=,然后由OD∥AE,得△FDO∽△FEA,再利用相似比可計算出BF.
試題解析:(1)證明:連接OD,如圖,
∵AB為⊙0的直徑,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴AD平分BC,即DB=DC,
∵OA=OB,
∴OD為△ABC的中位線,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∴EF是⊙0的切線;
(2)證明:∵EF是⊙O的切線,
∴∠ODB+∠BDF=90°,
∵OD=OB,
∴∠OBD=∠ODB,
∴∠OBD+∠BDF=90°,
∵AB是⊙O的直徑,
∴∠ADB=90°,
∴∠DAB+∠OBD=90°,
∴∠DAB=∠BDF,
∵∠BFD=∠DFA,
∴△FDB∽△FAD;
(3)∵∠DAC=∠DAB,
∴∠ADE=∠ABD,
在Rt△ADB中,sin∠ADE=sin∠ABD=,而AB=10,
∴AD=8,
在Rt△ADE中,sin∠ADE=,
∴AE=,
∵OD∥AE,
∴△FDO∽△FEA,
∴,
即,
∴BF=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩個一元二次方程:M:N:,其中,以下列四個結(jié)論中,錯誤的是( )
A、如果方程M有兩個不相等的實(shí)數(shù)根,那么方程N(yùn)也有兩個不相等的實(shí)數(shù)根;
B、如果方程M有兩根符號相同,那么方程N(yùn)的兩根符號也相同;
C、如果5是方程M的一個根,那么是方程N(yùn)的一個根;
D、如果方程M和方程N(yùn)有一個相同的根,那么這個根必是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)(﹣2,y1),(﹣1,y2),(1,y3)都在直線y=4x+2上,則y1,y2,y3的值的大小關(guān)系是( 。
A. y3<y1<y2 B. y1<y2<y3 C. y3>y1>y2 D. y1>y2>y3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下列各組數(shù)據(jù)為邊長,能構(gòu)成三角形的是:
A. 4,4,8 B. 2,4,7 C. 4,8,8 D. 2,2,7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為10厘米,點(diǎn)E在邊AB上,且AE=4厘米,如果點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動,同時,點(diǎn)Q在線段CD上由C點(diǎn)向D點(diǎn)運(yùn)動.設(shè)運(yùn)動時間為t秒.若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度相等,經(jīng)過幾秒后,△BPE與△CQP全等?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義符號min{a,b}的含義為:當(dāng)a≥b時,min{a,b}=b;當(dāng)a<b時,min{a,b}=a.如:min={1,﹣2}=﹣2,min{﹣1,2}=﹣1.則min{x2﹣1,﹣2}的值是( )
A.x2﹣1
B.2
C.﹣1
D.﹣2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com