如圖,已知正方形ABCD的邊長為4cm,動點P從點B出發(fā),以2cm/s的速度、沿B→C→D方向,向點D運動;動點Q從點A出發(fā),以1cm/s的速度、沿A→B方向,向點B運動.若P、Q兩點同時出發(fā),運動時間為t秒.
(1)連接PD、PQ、DQ,設(shè)△PQD的面積為S,試求S與t之間的函數(shù)關(guān)系式;
(2)當點P在BC上運動時,是否存在這樣的t,使得△PQD是等腰三角形?若存在,請求出符合條件的t的值;若不存在,請說明理由;
(3)以點P為圓心,作⊙P,使得⊙P與對角線BD相切.問:當點P在CD上運動時,是否存在這樣的t,使得⊙P恰好經(jīng)過正方形ABCD的某一邊的中點若存在,請求出符合條件的t的值;若不存在,請說明理由.
精英家教網(wǎng)
分析:(1)可根據(jù)三角形PQD的面積=梯形ABPD的面積-三角形AQD的面積-三角形BPQ的面積來求解,根據(jù)P,Q的速度,可以表示出AQ、BQ、BP,那么就能表示出兩直角三角形的直角邊以及梯形的兩底和高,可根據(jù)各自的面積計算公式得出S、t之間的函數(shù)關(guān)系式.
(2)要分三種情況進行討論:
當PD=QD時,根據(jù)斜邊直角邊定理,我們可得出三角形AQD和CPD全等,那么可得出CP=AQ,可用時間t分別表示出AQ、CP的長,然后可根據(jù)兩者的等量關(guān)系求出t的值.
當PD=PQ時,可在直角三角形BPQ和PDC中,根據(jù)勾股定理,用BQ、BP表示出PQ,用CP、CD表示出PD;BQ、BP、PC都可以用t來表示,由此可得出關(guān)于t的方程,解方程即可得出t的值.
當QD=PQ時,方法同上.
(3)應(yīng)當考慮兩種情況:
①圓心P經(jīng)過BC的中點,如果設(shè)圓與BD相切于M,BC的中點是E,那么PM=PE,可用時間t表示出CP的長,也就能表示出DP的長,那么可以根據(jù)勾股定理在直角三角形CEP中表示出PE2的長,也就表示出了PM2的長,然后根據(jù)∠MDP的正弦值表示出DP,PM的關(guān)系,由此可得出關(guān)于t的方程,進而求出t的值.
②圓心P經(jīng)過CD的中點,如過CD的中點是E,那么PM=PE,在直角三角形DMP中,DP=2-半徑的長,PM=半徑的長,因此可根據(jù)∠MDP的正弦函數(shù)求出半徑的長,然后用t表示出CP,即可求出t的值.
解答:解:(1)當0≤t≤2時,即點P在BC上時,
S=S正方形ABCD-S△ADQ-S△BPQ-S△PCD=16-
1
2
•4•t-
1
2
•2t•(4-t)-
1
2
•(4-2t)•4=t2-2t+8,
當2<t≤4時,即點P在CD上時,DP=8-2t,
S=
1
2
•(8-2t)•4=16-4t.
精英家教網(wǎng)

(2)①若PD=QD,則Rt△DCP≌Rt△DAQ(HL).
∴CP=AQ.即t=4-2t,解得t=
4
3

②若PD=PQ,則PD2=PQ2,即42+(4-2t)2=(4-t)2+(2t)2
解得t=-4±4
2
,其中t=-4-4
2
<0不合題意,舍去,∴t=-4+4
2

③若QD=PQ,則QD2=PQ2,即16+t2=(4-t)2+(2t)2,解得t=0或t=2,
∴t=
4
3
或t=-4+4
2
或t=0或t=2時,△PQD是等腰三角形.

(3)當P在CD上運動時,若⊙P經(jīng)過BC的中點E,設(shè)⊙P切BD于M.
則CP=2t-4,PM2=PE2=(2t-4)2+22
而在Rt△PMD中,由于∠PDM=45°,所以DP=
2
PM,即DP2=2PM2
∴(8-2t)2=2[(2t-4)2+22].
解得t=±
6
,負值舍去,
∴t=
6
,
若⊙P經(jīng)過CD的中點,⊙P的半徑r=2(
2
-1),
故t=2+
2

故當點P在CD上運動時,若t=
6
或2+
2
,則⊙P恰好經(jīng)過正方形ABCD的某一邊的中點.
點評:本題主要考查了正方形的性質(zhì),全等三角形的判定,切線的性質(zhì)等知識點.要注意(2)(3)中不同的情況要進行分類討論,不要丟掉任何一種情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD的邊AB與正方形AEFM的邊AM在同一直線上,直線BE與DM交于點N.求證:BN⊥DM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•北碚區(qū)模擬)如圖,已知正方形ABCD,點E是BC上一點,點F是CD延長線上一點,連接EF,若BE=DF,點P是EF的中點.
(1)求證:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD,點E在BC邊上,將△DCE繞某點G旋轉(zhuǎn)得到△CBF,點F恰好在AB邊上.
(1)請畫出旋轉(zhuǎn)中心G (保留畫圖痕跡),并連接GF,GE;
(2)若正方形的邊長為2a,當CE=
a
a
時,S△FGE=S△FBE;當CE=
2a+
2
a
2
或EC=
2a-
2
a
2
2a+
2
a
2
或EC=
2a-
2
a
2
 時,S△FGE=3S△FBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD的對角線交于O,過O點作OE⊥OF,分別交AB、BC于E、F,若AE=4,CF=3,則EF的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD的對角線AC,BD相交于點O,E是AC上的一點,過點A作AG⊥BE,垂足為G,AG交BD于點F.
(1)試說明OE=OF;
(2)當AE=AB時,過點E作EH⊥BE交AD邊于H.若該正方形的邊長為1,求AH的長.

查看答案和解析>>

同步練習(xí)冊答案