【題目】如圖,等腰ABC中,AB=AC,∠ACB=72°,

1)若BDACD,求∠ABD的度數(shù);

2)若CE平分∠ACB,求證:AE=BC

【答案】154°;(2)見解析

【解析】

1)根據(jù)等腰三角形的性質(zhì)得出∠ABC=∠ACB=72°,然后計(jì)算出∠DBC,即可計(jì)算∠ABD的度數(shù);

2)根據(jù)角平分線的性質(zhì)計(jì)算有關(guān)度數(shù),分別證明AE=EC BC=CE即可.

1等腰△ABC中,AB=AC∠ACB=72°,

∴∠ABC=∠ACB=72°,

∵BD⊥ACD,

∴∠DBC=90°-72°=18°,

∴∠ABD=72°-18°=54°;

2等腰△ABC中,AB=AC,∠ACB=72°

∴∠ABC=∠ACB=72°,∠A=36°

∵CE平分∠ACB,

∴∠ACE=∠ECB=36°,

∴∠A=∠ACE,

∴AE=EC,∠BEC=72°

∵∠ABC=72°,

∴∠ABC=∠BEC,

∴BC=CE,

∴AE=BC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲、乙兩船從港口A同時(shí)出發(fā),甲船以30海里/時(shí)的速度向北偏東35°的方向航行,乙船以40海里/時(shí)的速度向另一方向航行,2小時(shí)后,甲船到達(dá)C,乙船到達(dá)BC,B兩島相距100海里則乙船航行的方向是南偏東多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有理數(shù)ab、c滿足abcac0),且|c|<|b|<|a|,則|x|+|x|+|x+|的最小值是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB與直線CD相交于點(diǎn)OEOAB,OF平分∠AOC,

1)請寫出∠EOC的余角   ;

2)若∠BOC40°,求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】[知識背景]

數(shù)軸上,點(diǎn)A,B表示的數(shù)為a,b,則A,B兩點(diǎn)的距離AB|ab|A、B的中點(diǎn)P表示的數(shù)為

[知識運(yùn)用]

已知式子(a+4x3+2x2x+3是關(guān)于x的二次三項(xiàng)式,且二次項(xiàng)系數(shù)為b,且a,b在數(shù)軸上對應(yīng)的點(diǎn)分別為A,B(如圖1),解答下列問題:

1a   ,b   AB   ;

2)若點(diǎn)A以每秒2個(gè)單位的長度沿?cái)?shù)軸向右運(yùn)動,t秒后到達(dá)原點(diǎn)O,求t的值;

3)若點(diǎn)AB都以每秒2個(gè)單位長度的速度沿?cái)?shù)軸向右運(yùn)動到達(dá)點(diǎn)M和點(diǎn)N,而O點(diǎn)不動,經(jīng)過t秒后,MO,N三點(diǎn)中,其中一點(diǎn)是另外兩點(diǎn)的中點(diǎn),求此時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明星期天從家里出發(fā)騎車去舅舅家做客,當(dāng)他騎了一段路時(shí),想起要買個(gè)禮物送給表弟,于是又折回到剛經(jīng)過的一家商店,買好禮物后又繼續(xù)騎車去舅舅家,以下是他本次去舅舅家所用的時(shí)間與路程的關(guān)系式示意圖,根據(jù)圖中提供的信息回答下列問題:

1)小明家到舅舅家的路程是______米,小明在商店停留了______分鐘;

2)在整個(gè)去舅舅家的途中哪個(gè)時(shí)間段小明騎車速度最快,最快的速度是多少米/

分?

3)本次去舅舅家的行程中,小明一共行駛了多少米?一共用了多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩支“徒步隊(duì)”到野外沿相同路線徒步,徒步的路程為24千米.甲隊(duì)步行速度為4千米/時(shí),乙隊(duì)步行速度為6千米/時(shí).甲隊(duì)出發(fā)1小時(shí)后,乙隊(duì)才出發(fā),同時(shí)乙隊(duì)派一名聯(lián)絡(luò)員跑步在兩隊(duì)之間來回進(jìn)行一次聯(lián)絡(luò)(不停頓),他跑步的速度為10千米/時(shí).

(1)乙隊(duì)追上甲隊(duì)需要多長時(shí)間?

(2)聯(lián)絡(luò)員從出發(fā)到與甲隊(duì)聯(lián)系上后返回乙隊(duì)時(shí),他跑步的總路程是多少?

(3)從甲隊(duì)出發(fā)開始到乙隊(duì)完成徒步路程時(shí)止,何時(shí)兩隊(duì)間間隔的路程為1千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生會調(diào)查了八年級部分學(xué)生對垃圾分類的了解程度(1)在確定調(diào)查方式時(shí),學(xué)生會設(shè)計(jì)了以下三種方案,其中最具有代表性

的方案是________;

方案一:調(diào)查八年級部分男生;

方案二:調(diào)查八年級部分女生;

方案三:到八年級每個(gè)班去隨機(jī)調(diào)查一定數(shù)量的學(xué)生.

2)學(xué)生會采用最具有代表性的方案進(jìn)行調(diào)查后,將收集到的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計(jì)圖,如圖①、圖②.請你根據(jù)圖中信息,回答下列問題:

①本次調(diào)查學(xué)生人數(shù)共有_______名;

②補(bǔ)全圖①中的條形統(tǒng)計(jì)圖,圖②中了解一點(diǎn)的圓心角度數(shù)為_______

③根據(jù)本次調(diào)查,估計(jì)該校八年級500名學(xué)生中,比較了解垃圾分類的學(xué)生大約有_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn),與軸交于兩點(diǎn),其對稱軸與軸交于點(diǎn).

1)求拋物線的解析式和對稱軸;

2)在拋物線的對稱軸上是否存在一點(diǎn),使的周長最?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由;

3)連接,在直線的下方的拋物線上,是否存在一點(diǎn),使的面積最大?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案