【題目】如圖,已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(4,4)、B(5,0)和原點(diǎn)O.P為二次函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線,垂足為D(m,0),并與直線OA交于點(diǎn)C.
(1)求出二次函數(shù)的解析式;
(2)當(dāng)點(diǎn)P在直線OA的上方時(shí),求線段PC的最大值;
(3)當(dāng)m>0時(shí),探索是否存在點(diǎn)P,使得△PCO為等腰三角形,如果存在,求出P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y=﹣x2+5x;(2)當(dāng)點(diǎn)P在直線OA的上方時(shí),線段PC的最大值是4;(3)存在,P的坐標(biāo)是(4﹣,2+3)或(4+,2﹣3)或(6,﹣6)或(5,0).
【解析】
(1)設(shè)y=ax(x﹣5),把A點(diǎn)坐標(biāo)代入即可求出答案;
(2)根據(jù)點(diǎn)的坐標(biāo)求出PC=﹣m2+4m,化成頂點(diǎn)式即可求出線段PC的最大值;
(3)當(dāng)0<m<4時(shí),僅有OC=PC,列出方程,求出方程的解即可;當(dāng)m≥4時(shí),PC=CD﹣PD=m2﹣4m,OC=m,分為三種情況:①當(dāng)OC=PC時(shí),m2﹣4m=m,求出方程的解即可得到P的坐標(biāo);同理可求:②當(dāng)OC=OP時(shí),③當(dāng)PC=OP時(shí),點(diǎn)P的坐標(biāo).綜合上述即可得到答案.
解:(1)設(shè)y=ax(x﹣5),
把A點(diǎn)坐標(biāo)(4,4)代入得:4a(4﹣5)=4,
解得a=﹣1,
函數(shù)的解析式為y=﹣x2+5x,
答:二次函數(shù)的解析式是y=﹣x2+5x.
(2)解:0<m<4,PC=PD﹣CD,
∵D(m,0),PD⊥x軸,P在y=﹣x2+5x上,C在直線OA上,A(4,4),
∴P(m,﹣m2+5m),C(m,m)
∴PC=PD﹣CD=﹣m2+5m﹣m=﹣m2+4m,
=﹣(m﹣2)2+4,
∵a=﹣1<0,開(kāi)口向下,
∴有最大值,
當(dāng)D(2,0)時(shí),PCmax=4,
答:當(dāng)點(diǎn)P在直線OA的上方時(shí),線段PC的最大值是4.
(3)當(dāng)0<m<4時(shí),僅有OC=PC,∴﹣m2+4m=m,
解得m=4﹣,
∴P(4﹣,2+3);
當(dāng)m≥4時(shí),PC=CD﹣PD=m2﹣4m,OC=m,
由勾股定理得:OP2=OD2+DP2=m2+m2(m﹣5)2,
①當(dāng)OC=PC時(shí),m2﹣4m=m,
解得:m=4+或m=0(舍去),
∴P(4+,2﹣3);
②當(dāng)OC=OP時(shí),(m)2=m2+m2(m﹣5)2,
解得:m1=6,m2=4,
∵m=4時(shí),P和A重合,即P和C重合,不能組成△POC,
∴m=4舍去,
∴P(6,﹣6);
③當(dāng)PC=OP時(shí),m2(m﹣4)2=m2+m2(m﹣5)2,
解得:m=5,
∴P(5,0),
答:存在,P的坐標(biāo)是(4﹣,2+3)或(4+,2﹣3)或(6,﹣6)或(5,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線與反比例函數(shù)的圖像分別交于點(diǎn)和點(diǎn),與坐標(biāo)軸分別交于點(diǎn)和點(diǎn).若點(diǎn)是軸上一動(dòng)點(diǎn),當(dāng)與相似時(shí),則點(diǎn)的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩校分別有一男一女共4名教師報(bào)名到農(nóng)村中學(xué)支教.
(1)若從甲、乙兩校報(bào)名的教師中分別隨機(jī)選1名,則所選的2名教師性別相同的概率是 .
(2)若從報(bào)名的4名教師中隨機(jī)選2名,用列表或畫樹(shù)狀圖的方法求出這2名教師來(lái)自同一所學(xué)校的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子中放有四張分別寫有數(shù)字1、2、3、4的紅色卡片和三張分別寫有數(shù)字1、2、3的藍(lán)色卡片,卡片除顏色和數(shù)字外其它完全相同。
(1)從中任意抽取一張卡片,則該卡片上寫有數(shù)字1的概率是;
(2)將3張藍(lán)色卡片取出后放入另外一個(gè)不透明的盒子內(nèi),然后在兩個(gè)盒子內(nèi)各任意抽取一張卡片,以紅色卡片上的數(shù)字作為十位數(shù),藍(lán)色卡片上的數(shù)字作為個(gè)位數(shù)組成一個(gè)兩位數(shù),求這個(gè)兩位數(shù)大于22的概率。(請(qǐng)利用樹(shù)狀圖或列表法說(shuō)明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙P的半徑為4,圓心P在拋物線y=x2﹣2x﹣3上運(yùn)動(dòng),當(dāng)⊙P與x軸相切時(shí),則圓心P的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,其邊長(zhǎng)為2,點(diǎn)A,點(diǎn)C分別在軸,軸的正半軸上.函數(shù)的圖象與CB交于點(diǎn)D,函數(shù)(為常數(shù),)的圖象經(jīng)過(guò)點(diǎn)D,與AB交于點(diǎn)E,與函數(shù)的圖象在第三象限內(nèi)交于點(diǎn)F,連接AF、EF.
(1)求函數(shù)的表達(dá)式,并直接寫出E、F兩點(diǎn)的坐標(biāo).
(2)求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和⊙C,給出如下定義:若⊙C上存在兩個(gè)點(diǎn)A,B,使得∠APB=60°,則稱P為⊙C 的關(guān)聯(lián)點(diǎn)。已知點(diǎn)D(,),E(0,-2),F(,0)
(1)當(dāng)⊙O的半徑為1時(shí),
①在點(diǎn)D,E,F中,⊙O的關(guān)聯(lián)點(diǎn)是 ;
②過(guò)點(diǎn)F作直線交y軸正半軸于點(diǎn)G,使∠GFO=30°,若直線上的點(diǎn)P(m,n)是⊙O的關(guān)聯(lián)點(diǎn),求m的取值范圍;
(2)若線段EF上的所有點(diǎn)都是某個(gè)圓的關(guān)聯(lián)點(diǎn),求這個(gè)圓的半徑r的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊分別在x軸、y軸上,D是對(duì)角線的交點(diǎn),若反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)D,且與矩形OABC的兩邊AB,BC分別交于點(diǎn)E,F.
(1)若D的坐標(biāo)為(4,2)
①則OA的長(zhǎng)是 ,AB的長(zhǎng)是 ;
②請(qǐng)判斷EF是否與AC平行,井說(shuō)明理由;
③在x軸上是否存在一點(diǎn)P.使PD+PE的值最小,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo)及此時(shí)PD+PE的長(zhǎng);若不存在.請(qǐng)說(shuō)明理由.
(2)若點(diǎn)D的坐標(biāo)為(m,n),且m>0,n>0,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中放入一個(gè)矩形紙片ABCO,將紙片翻折后,點(diǎn)B恰好落在軸上,記為,折痕為CE.直線CE的關(guān)系式是,與軸相交于點(diǎn)F,且AE=3.
(1)求OC長(zhǎng)度;
(2)求點(diǎn)的坐標(biāo);
(3)求矩形ABCO的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com