如圖,在四邊形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,點(diǎn)E、F分別為AB,AD的中點(diǎn),則△AEF與多邊形BCDFE的面積之比為
A.B.C.D.
C

試題分析:連接BD,先根據(jù)三角形的中位線定理求出EF=BD,EF∥BD,即得△AEF∽△ABD,再根據(jù)相似三角形的性質(zhì)即可求出△AEF與多邊形BCDFE的面積之比.
連接BD 

∵F、E分別為AD、AB中點(diǎn),
∴EF=BD,EF∥BD,
∴△AEF∽△ABD,

∴△AEF的面積:四邊形EFDB的面積=1:3,
∵CD=AB,CB⊥DC,AB∥CD,

∴△AEF與多邊形BCDFE的面積之比為1:(1+4)=1:5,
故選C.
點(diǎn)評(píng):相似三角形的判定和性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見的知識(shí)點(diǎn),一般難度不大,需熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線y=2x+4與x軸、y軸的交點(diǎn)分別為A、B,y軸上點(diǎn)C的坐標(biāo)為(0,2),在x軸上找一點(diǎn)P,使得以P、O、C為頂點(diǎn)的三角形與△AOB相似,則點(diǎn)P的坐標(biāo)為                       。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知AB⊥BD,CD⊥BD

(1)若AB=9,CD=4,BD=10,請(qǐng)問在BD上是否存在P點(diǎn),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似?若存在,求BP的長(zhǎng);若不存在,請(qǐng)說明理由;
(2)若AB=9,CD=4,BD=12,請(qǐng)問在BD上存在多少個(gè)P點(diǎn),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似?并求BP的長(zhǎng);
(3)若AB=9,CD=4,BD=15,請(qǐng)問在BD上存在多少個(gè)P點(diǎn),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似?并求BP的長(zhǎng);
(4)若AB=m,CD=n,BD=l,請(qǐng)問m,n,l滿足什么關(guān)系時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的一個(gè)P點(diǎn)??jī)蓚(gè)P點(diǎn)?三個(gè)P點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,若∠AED=∠B,DE=6,AB=10,AE=8,則BC的長(zhǎng)為(  )
A.B.7C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

直角三角形ABC中,∠ABC=90°,AC=10,BC=6,AB=8。P是AC上的一個(gè)動(dòng)點(diǎn),當(dāng)P在AC上運(yùn)動(dòng)時(shí),設(shè)PC=x,△ABP 的面積為y.
(1)求AC邊上的高是多少?
(2)求y與x之間的關(guān)系式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC是等邊三角形,點(diǎn)D,E分別在BC,AC上,且BD=CE,AD與BE相交于點(diǎn)F。

(1)試說明△ABD≌△BCE;
(2)△AEF與△ABE相似嗎?說說你的理由;
(3)BD2=AD·DF成立嗎?若成立,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,M、N分別是邊AB、AC的中點(diǎn),則△AMN的面積與四邊形MBCN的面積比為

(A)        (B)        (C)        (D)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:把按如圖(1)擺放(點(diǎn)與點(diǎn)重合),點(diǎn)、)、在同一條直線上.,,,.如圖(2),從圖(1)的位置出發(fā),以的速度沿勻速移動(dòng),在移動(dòng)的同時(shí),點(diǎn)的頂點(diǎn)出發(fā),以2 cm/s的速度沿向點(diǎn)勻速移動(dòng).當(dāng)的頂點(diǎn)移動(dòng)到邊上時(shí),停止移動(dòng),點(diǎn)也隨之停止移動(dòng).相交于點(diǎn),連接,設(shè)移動(dòng)時(shí)間為

(1)當(dāng)為何值時(shí),點(diǎn)在線段的垂直平分線上?
(2)連接,設(shè)四邊形的面積為,求之間的函數(shù)關(guān)系式;是否存在某一時(shí)刻,使面積最小?若存在,求出的最小值;若不存在,說明理由.
(3)是否存在某一時(shí)刻,使、三點(diǎn)在同一條直線上?若存在,求出此時(shí)的值;若不存在,說明理由.(圖(3)供同學(xué)們做題使用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在△ABC中,點(diǎn)D、E分別在AB、AC上,∠ADE=∠C,如果AD=3,△ADE的面積為9,四邊形BDEC的面積為16,則AC的長(zhǎng)為        .

查看答案和解析>>

同步練習(xí)冊(cè)答案