【題目】一條公路旁依次有三個(gè)村莊,甲乙兩人騎自行車分別從村、村同時(shí)出發(fā)前往村,甲乙之間的距離與騎行時(shí)間之間的函數(shù)關(guān)系如圖所示,下列結(jié)論:①兩村相距10;②出發(fā)1.25后兩人相遇;③甲每小時(shí)比乙多騎行8;④相遇后,乙又騎行了1565時(shí)兩人相距2.其中正確的個(gè)數(shù)是( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】D

【解析】

根據(jù)題意結(jié)合一次函數(shù)的圖像與性質(zhì)即可一一判斷.

解:

由圖象可知村、村相離10,故①正確,

當(dāng)1.25時(shí),甲、乙相距為0,故在此時(shí)相遇,故②正確,

當(dāng)時(shí),易得一次函數(shù)的解析式為,故甲的速度比乙的速度快8.故③正確

當(dāng)時(shí),函數(shù)圖象經(jīng)過點(diǎn)設(shè)一次函數(shù)的解析式為

代入得,解得

當(dāng)時(shí).得,解得

同理當(dāng)時(shí),設(shè)函數(shù)解析式為

將點(diǎn)代入得

,解得

當(dāng)時(shí),得,解得

故相遇后,乙又騎行了1565時(shí)兩人相距2,④正確.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,

1)證明:

2,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=5,BC=3,將矩形ABCD繞點(diǎn)B旋轉(zhuǎn)得到矩形GBEF.

1)觀察發(fā)現(xiàn):在旋轉(zhuǎn)的過程中, 的值不變,這個(gè)數(shù)值是   ;

(2)問題解決:當(dāng)點(diǎn)G落在直線CD上時(shí),求CE的長(zhǎng);

(3)數(shù)學(xué)思考:在旋轉(zhuǎn)的過程中,CE是否有最大值,如果有,請(qǐng)直接寫出;如果沒有,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠A=C,ADBE于點(diǎn)FBCBE,點(diǎn)E,DC在同一條直線上.

(1)判斷ABCD的位置關(guān)系,并說明理由;

(2)若∠ABC=120°,求∠BEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,彈性小球從P(20)出發(fā),沿所示方向運(yùn)動(dòng),每當(dāng)小球碰到正方形OABC的邊時(shí)反彈,反彈時(shí)反射角等于入射角,當(dāng)小球第一次碰到正方形的邊時(shí)的點(diǎn)為P1,第二次碰到正方形的邊時(shí)的點(diǎn)為P2,第n次碰到正方形的邊時(shí)的點(diǎn)為Pn,則P2020的坐標(biāo)是( 。

A.(53)B.(3,5)C.(0,2)D.(2,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),與軸交于點(diǎn),若,.

(1)求反比例函數(shù)的解析式:

(2)若點(diǎn)軸上一動(dòng)點(diǎn),當(dāng)是等腰三角形時(shí),直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:將邊長(zhǎng)為的正三角形的三條邊分別等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?

探究:要研究上面的問題,我們不妨先從最簡(jiǎn)單的情形入手,進(jìn)而找到一般性規(guī)律.

探究一:將邊長(zhǎng)為2的正三角形的三條邊分別二等分,連接各邊中點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?

如圖①,連接邊長(zhǎng)為2的正三角形三條邊的中點(diǎn),從上往下看:

邊長(zhǎng)為1的正三角形,第一層有1個(gè),第二層有3個(gè),共有個(gè);

邊長(zhǎng)為2的正三角形一共有1個(gè).

探究二:將邊長(zhǎng)為3的正三角形的三條邊分別三等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?

如圖②,連接邊長(zhǎng)為3的正三角形三條邊的對(duì)應(yīng)三等分點(diǎn),從上往下看:邊長(zhǎng)為1的正三角形,第一層有1個(gè),第二層有3個(gè),第三層有5個(gè),共有個(gè);邊長(zhǎng)為2的正三角形共有個(gè).

探究三:將邊長(zhǎng)為4的正三角形的三條邊分別四等分(圖③),連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?

(仿照上述方法,寫出探究過程)

結(jié)論:將邊長(zhǎng)為的正三角形的三條邊分別等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形和邊長(zhǎng)為2的正三角形分別有多少個(gè)?

(仿照上述方法,寫出探究過程)

應(yīng)用:將一個(gè)邊長(zhǎng)為25的正三角形的三條邊分別25等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長(zhǎng)為1的正三角形有______個(gè)和邊長(zhǎng)為2的正三角形有______個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《代數(shù)學(xué)》中記載,形如x2+8x33的方程,求正數(shù)解的幾何方法是:“如圖1,先構(gòu)造一個(gè)面積為x2的正方形,再以正方形的邊長(zhǎng)為一邊向外構(gòu)造四個(gè)面積為2x的矩形,得到大正方形的面積為33+1649,則該方程的正數(shù)解為743.”小聰按此方法解關(guān)于x的方程x2+10x+m0時(shí),構(gòu)造出如圖2所示的圖形,已知陰影部分的面積為50,則該方程的正數(shù)解為(  )

A.6B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角ABC中,D,E分別為AB,BC中點(diǎn),FAC上一點(diǎn),且∠AFE=ADMEFAC于點(diǎn)M

1)點(diǎn)GBE上,且∠BDG=C,求證:DGCF=DMEG;

2)在圖中,取CE上一點(diǎn)H,使∠CFH=B,若BG=1,求EH的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案