如圖,已知拋物線y=x2+bx+c經(jīng)過點(diǎn)(1,﹣5)和(﹣2,4)
(1)求這條拋物線的解析式;
(2)設(shè)此拋物線與直線y=x相交于點(diǎn)A,B(點(diǎn)B在點(diǎn)A的右側(cè)),平行于y軸的直線x=m(0<m<+1)與拋物線交于點(diǎn)M,與直線y=x交于點(diǎn)N,交x軸于點(diǎn)P,求線段MN的長(用含m的代數(shù)式表示);
(3)在條件(2)的情況下,連接OM、BM,是否存在m的值,使△BOM的面積S最大?若存在,請(qǐng)求出m的值;若不存在,請(qǐng)說明理由.
考點(diǎn):
二次函數(shù)綜合題..
專題:
壓軸題.
分析:
(1)利用待定系數(shù)法,將A,B的坐標(biāo)代入解析式即可求得二次函數(shù)的解析式;
(2)因?yàn)辄c(diǎn)B是y=x與y=x2﹣2x﹣4的交點(diǎn),根據(jù)題意可求得N,M的坐標(biāo),則可表示出MN的長,通過縱坐標(biāo)的絕對(duì)值的和求得;
(3)把△BOM分成兩個(gè)△OMN與△BMN,把MN作為兩個(gè)三角形的底,通過點(diǎn)B,P的縱坐標(biāo)表示出兩個(gè)三角形的高即可求得三角形的面積.
解答:
解:(1)由題意把點(diǎn)(1,﹣5)、(﹣2,4)代入y=x2+bx+c得:
,
解得b=﹣2,c=﹣4,(3分)
∴此拋物線解析式為:y=x2﹣2x﹣4;
(2)由題意得:,
∴x2﹣3x﹣4=0,
解得:x=4或x=﹣1(舍),
∴點(diǎn)B的坐標(biāo)為(4,4),
將x=m代入y=x條件得y=m,
∴點(diǎn)N的坐標(biāo)為(m,m),
同理點(diǎn)M的坐標(biāo)為(m,m2﹣2m﹣4),點(diǎn)P的坐標(biāo)為(m,0),
∴PN=|m|,MP=|m2﹣2m﹣4|,
∵0<m<+1,
∴MN=PN+MP=﹣m2+3m+4;
(3)作BC⊥MN于點(diǎn)C,
則BC=4﹣m,OP=m,
S=MN•OP+MN•BC,
=2(﹣m2+3m+4),
=﹣2(m﹣)2+12,(11分)
∵﹣2<0,
∴當(dāng)m﹣=0,則m=時(shí),S有最大值.
點(diǎn)評(píng):
此題考查了待定系數(shù)法求解析式,還考查了三角形的面積,要注意將三角形分解成兩個(gè)三角形求解;
還要注意求最大值可以借助于二次函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com