如圖,已知拋物線y=x2+bx+c經(jīng)過點(diǎn)(1,﹣5)和(﹣2,4)

(1)求這條拋物線的解析式;

(2)設(shè)此拋物線與直線y=x相交于點(diǎn)A,B(點(diǎn)B在點(diǎn)A的右側(cè)),平行于y軸的直線x=m(0<m<+1)與拋物線交于點(diǎn)M,與直線y=x交于點(diǎn)N,交x軸于點(diǎn)P,求線段MN的長(用含m的代數(shù)式表示);

(3)在條件(2)的情況下,連接OM、BM,是否存在m的值,使△BOM的面積S最大?若存在,請(qǐng)求出m的值;若不存在,請(qǐng)說明理由.

考點(diǎn):

二次函數(shù)綜合題..

專題:

壓軸題.

分析:

(1)利用待定系數(shù)法,將A,B的坐標(biāo)代入解析式即可求得二次函數(shù)的解析式;

(2)因?yàn)辄c(diǎn)B是y=x與y=x2﹣2x﹣4的交點(diǎn),根據(jù)題意可求得N,M的坐標(biāo),則可表示出MN的長,通過縱坐標(biāo)的絕對(duì)值的和求得;

(3)把△BOM分成兩個(gè)△OMN與△BMN,把MN作為兩個(gè)三角形的底,通過點(diǎn)B,P的縱坐標(biāo)表示出兩個(gè)三角形的高即可求得三角形的面積.

解答:

解:(1)由題意把點(diǎn)(1,﹣5)、(﹣2,4)代入y=x2+bx+c得:

,

解得b=﹣2,c=﹣4,(3分)

∴此拋物線解析式為:y=x2﹣2x﹣4;

(2)由題意得:,

∴x2﹣3x﹣4=0,

解得:x=4或x=﹣1(舍),

∴點(diǎn)B的坐標(biāo)為(4,4),

將x=m代入y=x條件得y=m,

∴點(diǎn)N的坐標(biāo)為(m,m),

同理點(diǎn)M的坐標(biāo)為(m,m2﹣2m﹣4),點(diǎn)P的坐標(biāo)為(m,0),

∴PN=|m|,MP=|m2﹣2m﹣4|,

∵0<m<+1,

∴MN=PN+MP=﹣m2+3m+4;

(3)作BC⊥MN于點(diǎn)C,

則BC=4﹣m,OP=m,

S=MN•OP+MN•BC,

=2(﹣m2+3m+4),

=﹣2(m﹣2+12,(11分)

∵﹣2<0,

∴當(dāng)m﹣=0,則m=時(shí),S有最大值.

點(diǎn)評(píng):

此題考查了待定系數(shù)法求解析式,還考查了三角形的面積,要注意將三角形分解成兩個(gè)三角形求解;

還要注意求最大值可以借助于二次函數(shù).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點(diǎn)P,使△PAB的面積等于△ABC的面積,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
(4)點(diǎn)Q是直線BC上的一個(gè)動(dòng)點(diǎn),若△QOB為等腰三角形,請(qǐng)寫出此時(shí)點(diǎn)Q的坐標(biāo).(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對(duì)稱軸x=1上求一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,并求出此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點(diǎn),對(duì)稱軸是x=-1.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度在線段OA上運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從O點(diǎn)出發(fā)以每秒3個(gè)單位長度的速度在線段OB上運(yùn)動(dòng),過點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)點(diǎn)P是拋物線對(duì)稱軸上一點(diǎn),若△PAB∽△OBC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)是(-1,-4),且與x軸交于A、B(1,0)兩點(diǎn),交y軸于點(diǎn)C;
(1)求此拋物線的解析式;
(2)①當(dāng)x的取值范圍滿足條件
-2<x<0
-2<x<0
時(shí),y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點(diǎn),且y1>y2,求實(shí)數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點(diǎn)M、交拋物線于點(diǎn)N,求線段MN的長度的最大值;
(4)若以拋物線上的點(diǎn)P為圓心作圓與x軸相切時(shí),正好也與y軸相切,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案