【題目】已知:如圖1,菱形ABCD的邊長(zhǎng)為6,∠DAB=60°,點(diǎn)E是AB的中點(diǎn),連接AC、EC.點(diǎn)Q從點(diǎn)A出發(fā),沿折線A﹣D﹣C運(yùn)動(dòng),同時(shí)點(diǎn)P從點(diǎn)A出發(fā),沿射線AB運(yùn)動(dòng),P、Q的速度均為每秒1個(gè)單位長(zhǎng)度;以PQ為邊在PQ的左側(cè)作等邊△PQF,△PQF與△AEC重疊部分的面積為S,當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)C時(shí)P、Q同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t.
(1)當(dāng)?shù)冗?/span>△PQF的邊PQ恰好經(jīng)過(guò)點(diǎn)D時(shí),求運(yùn)動(dòng)時(shí)間t的值;當(dāng)?shù)冗?/span>△PQF的邊QF 恰好經(jīng)過(guò)點(diǎn)E時(shí),求運(yùn)動(dòng)時(shí)間t的值;
(2)在整個(gè)運(yùn)動(dòng)過(guò)程中,請(qǐng)求出S與t之間的函數(shù)關(guān)系式和相應(yīng)的自變量t的取值范圍;
(3)如圖2,當(dāng)點(diǎn)Q到達(dá)C點(diǎn)時(shí),將等邊△PQF繞點(diǎn)P旋轉(zhuǎn)α°(0<α<360),直線PF分別與直線AC、直線CD交于點(diǎn)M、N.是否存在這樣的α,使△CMN為等腰三角形?若存在,請(qǐng)直接寫(xiě)出此時(shí)線段CM的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)6s,9s;(2)當(dāng)0<t≤3時(shí),S=;當(dāng)3<t≤6時(shí),S=;當(dāng)6<t≤9時(shí),S=,9<t≤12時(shí),S=
;(3)2或6或12+6.
【解析】試題分析:(1)根據(jù)題意求出運(yùn)動(dòng)的距離,再除以速度即可求出時(shí)間;
(2)分當(dāng)0<t≤3時(shí),當(dāng)3<t≤6時(shí),當(dāng)6<t≤9時(shí),當(dāng)9<t≤12時(shí),四種情況,分別求出重疊部分面積即可;
(3)分交點(diǎn)都在BC左側(cè),頂角為120°,交點(diǎn)都在BC右側(cè)時(shí),頂角可能為30°和120°;交點(diǎn)在BC兩側(cè)時(shí),頂角為150°進(jìn)行討論求解即可.
試題解析:(1)當(dāng)?shù)冗?/span>△PQF的邊PQ恰好經(jīng)過(guò)點(diǎn)D時(shí),
如圖1
AQ=AD=6,∴t=6÷1=6(秒);當(dāng)?shù)冗?/span>△PQF的邊QF 恰好經(jīng)過(guò)點(diǎn)E時(shí),
如圖2
由菱形ABCD的邊長(zhǎng)為6,∠DAB=60°,P、Q的速度均為每秒1個(gè)單位長(zhǎng)度,
知:∠APQ=60°,∠QEB=60°,∴QE∥AD,∵點(diǎn)E是AB的中點(diǎn),
∴此時(shí)點(diǎn)Q是CD的中點(diǎn),可求:AD+DQ=6+3=9,所以t=9÷1=9(秒);
(2)
如圖3
當(dāng)0<t≤3時(shí),由菱形ABCD的邊長(zhǎng)為6,∠DAB=60°,可求:∠PAG=30°,
∵∠APQ=60°,∴∠AGP=90°,由AP=t,可求:PG=t,AG=t,
∴S=PG×AG=;
當(dāng)3<t≤6時(shí),
如圖4
AE=3,AP=t,∴PE=t﹣3,過(guò)點(diǎn)C作AB的垂線,垂足為H,
由菱形ABCD的邊長(zhǎng)為6,∠DAB=60°,可求:CH=3,BH=3,EH=6,
tan∠KEB=,過(guò)點(diǎn)K作KM⊥AB,可求KM=,
∴S△PEK=,可求∠QAG=30°,又∠AQG=60°,AQ=t,
可求∠AGQ=90°,DG=t,GQ=t,∴S△AGQ=,等邊三角形APD的面積為:
∴S=﹣﹣=,
當(dāng)6<t≤9時(shí),如圖5
與前同理可求:S△FQP=,S△GQN=,S△KEP=,
∴S=﹣﹣=,
當(dāng)9<t≤12時(shí),
如圖6
求出:S△PQF=,S△QGH=;S△NEP=;S△KEF=,
∴S=S△PQF﹣S△QGH﹣S△NEP+S△KEF=﹣﹣+=;
(3)
逆時(shí)針旋轉(zhuǎn):
①α=150°,如圖7此時(shí),易求∠CNM=∠NCM=∠APM=∠MAP=∠DAP=30°,
可證△ACD∽△APM,∴,
易求AP=12,AC=6,AD=6,解得:AM=4,所以,CM=2;
②α=105°,如圖8
此時(shí),易求CM=CN,∠CMN=∠CNM=∠APM=75°,∴AM=AP=12,
在菱形ABCD中,AD=CD=6,∠D=120°,
可求AC=6,所以,CM=12-6;
③α=60°,如圖9
此時(shí),易求∠CMN=∠MCN=∠ACB=30°,∴BC∥PM,由AB=BP=6可得,CM=AC=6
所以:CM=6;
④α=15°,如圖10
此時(shí),易求∠APM=∠M=15°,∴AM=AP=12,所以:CM=AM+AC,CM=12+6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算(2×104)3 等于( )
A. 6×107 B. 8×107 C. 2×1012 D. 8×1012
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面計(jì)算正確的是( 。
A. a4a2=a8B. (a3)2=a9C. a6÷a2=a3D. a2+a2=2a2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)多項(xiàng)式加上5x2+3x-2的2倍得1-3x2+x , 求這個(gè)多項(xiàng)式
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】要反映我市某一周每天的最高氣溫的變化趨勢(shì),宜采用( )
A.扇形統(tǒng)計(jì)圖
B.條形統(tǒng)計(jì)圖
C.折線統(tǒng)計(jì)圖
D.頻數(shù)分布統(tǒng)計(jì)圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】容量100的樣本數(shù)據(jù),按從小到大的順序分8組,如表:
組號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
頻數(shù) | 10 | 13 | x | 14 | 15 | 13 | 12 | 9 |
第三組的頻數(shù)是( )
A.14
B.13
C.12
D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小敏上午8:00從家里出發(fā),騎車(chē)去一家超市購(gòu)物,然后從這家超市返回家中.小敏離家的路程y(米)和所經(jīng)過(guò)的時(shí)間x(分)之間的函數(shù)圖象如圖所示.請(qǐng)根據(jù)圖象回答下列問(wèn)題:
(1)小敏去超市途中的速度是 ;在超市逗留了 ;
(2)小敏幾點(diǎn)幾分返回到家?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com