【題目】隨著我省大美青海,美麗夏都影響力的擴(kuò)大,越來越多的游客慕名而來。根據(jù)青海省旅游局《2015年國慶長假出游趨勢報(bào)告》繪制了如下尚不完整的統(tǒng)計(jì)圖。

根據(jù)以上信息解答下列問題:

(1)2015年國慶期間,西寧周邊景區(qū)共接待游客___萬人,扇形統(tǒng)計(jì)圖中青海湖所對應(yīng)的圓心角的度數(shù)是___,并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)甲乙兩個(gè)旅行團(tuán)在青海湖、塔爾寺、原子城三個(gè)景點(diǎn)中,同時(shí)選擇去同一個(gè)景點(diǎn)的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所有等可能的結(jié)果。

【答案】(1)共接待游客人數(shù)為50萬人,“青海湖”所對應(yīng)的圓心角的度數(shù)是108°,補(bǔ)全條形統(tǒng)計(jì)圖如圖,見解析;(2)同時(shí)選擇去同一個(gè)景點(diǎn)的概率是.

【解析】

1)根據(jù)條形圖和扇形圖得到游“青海湖”的人數(shù)和所占的百分比,計(jì)算出共接待游客人數(shù),根據(jù)“青海湖”所占的百分比求出圓心角,求出塔爾寺人數(shù),補(bǔ)全條形統(tǒng)計(jì)圖;

3)列表求出共有9種可能出現(xiàn)的結(jié)果,這些結(jié)果出現(xiàn)的可能性相等,其中同時(shí)選擇去同一個(gè)景點(diǎn)的結(jié)果有3種,根據(jù)概率公式計(jì)算即可

(1)由條形圖和扇形圖可知,游青海湖的人數(shù)是15萬人,占30%,

∴共接待游客人數(shù)為:15÷30%=50(萬人),

青海湖所對應(yīng)的圓心角的度數(shù)是:360°×30%=108°,

塔爾寺人數(shù)為:24%×50=12(萬人),補(bǔ)全條形統(tǒng)計(jì)圖如圖:

(2) 設(shè)A,B,C分別表示青海湖、塔爾寺、原子城.列表如下:

由此可見,共有9種可能出現(xiàn)的結(jié)果,這些結(jié)果出現(xiàn)的可能性相等,其中同時(shí)選擇去同一個(gè)景點(diǎn)的結(jié)果有3種.

∴同時(shí)選擇去同一個(gè)景點(diǎn)的概率是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀以下材料:

對數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾(J. Nplcr,1550-1617年),納皮爾發(fā)明對數(shù)是在指數(shù)書寫方式之前,直到18世紀(jì)瑞士數(shù)學(xué)家歐拉(Evlcr,1707-1783年)才發(fā)現(xiàn)指數(shù)與對數(shù)之間的聯(lián)系.

對數(shù)的定義:一般地,若,那么叫做以為底的對數(shù),記作:.比如指數(shù)式可以轉(zhuǎn)化為,對數(shù)式可以轉(zhuǎn)化為.

我們根據(jù)對數(shù)的定義可得到對數(shù)的一個(gè)性質(zhì):;理由如下:

設(shè),,則,

,由對數(shù)的定義得

又∵

解決以下問題:

1)將指數(shù)轉(zhuǎn)化為對數(shù)式______;

2)證明

3)拓展運(yùn)用:計(jì)算______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是矩形,ADEF是正方形,點(diǎn)A、Dx軸的正半軸上,點(diǎn)Cy軸的正半軸上,點(diǎn)FAB上,點(diǎn)B,E在反比例函數(shù)y的圖象上,OA1,OC6,試求出正方形ADEF的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果一元二次方程滿足,那么我們稱這個(gè)方程為鳳凰方程.已知鳳凰方程,且有兩個(gè)相等的實(shí)數(shù)根,則下列結(jié)論正確的是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊的邊長為8,點(diǎn)PAB邊上的一個(gè)動點(diǎn)(與點(diǎn)A、B不重合),直線是經(jīng)過點(diǎn)P的一條直線,把沿直線折疊,點(diǎn)B的對應(yīng)點(diǎn)是點(diǎn).

(1)如圖1,當(dāng)時(shí),若點(diǎn)恰好在AC邊上,則的長度為    ;

(2)如圖2,當(dāng)時(shí),若直線,則的長度為    ;

(3)如圖3,點(diǎn)PAB邊上運(yùn)動過程中,若直線始終垂直于AC,的面積是否變化?若變化,說明理由;若不變化,求出面積;

(4)當(dāng)時(shí),在直線變化過程中,求面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知菱形ABCD的邊長為2,點(diǎn)Ax軸負(fù)半軸上,點(diǎn)B在坐標(biāo)原點(diǎn)。點(diǎn)D的坐標(biāo)為(,3),拋物線y=ax2+b(a≠0)經(jīng)過AB、CD兩邊的中點(diǎn).

(1)求這條拋物線的函數(shù)解析式;

(2)將菱形ABCD以每秒1個(gè)單位長度的速度沿x軸正方向勻速平移(如圖2),過點(diǎn)BBE⊥CD于點(diǎn)E,交拋物線于點(diǎn)F,連接DF.設(shè)菱形ABCD平移的時(shí)間為t(0<t<3)

是否存在這樣的t,使DF=FB?若存在,求出t的值;若不存在,請說明理由;

②連接FC,以點(diǎn)F為旋轉(zhuǎn)中心,FEC按順時(shí)針方向旋轉(zhuǎn)180°,FE′C′,當(dāng)FE′C′落在x軸與拋物線在x軸上方的部分圍成的圖形中(包括邊界)時(shí),t的取值范圍.(直接寫出答案即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形OABC的三個(gè)頂點(diǎn)A、B、C在以O為圓心的半圓上,過點(diǎn)CCDAB,分別交AB、AO的延長線于點(diǎn)D、E,AE交半圓O于點(diǎn)F,連接CF.

1)判斷直線DE與半圓O的位置關(guān)系,并說明理由;

2)若半圓O的半徑為12,求涂色部分的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AC16,BC12,點(diǎn)D、E分別為邊AB、BC中點(diǎn),點(diǎn)P從點(diǎn)A出發(fā),沿射線AB方向以每秒5個(gè)單位長度的速度向點(diǎn)B運(yùn)動,到點(diǎn)B停止.當(dāng)點(diǎn)P不與點(diǎn)A重合時(shí),過點(diǎn)PPQAC,且點(diǎn)Q在直線AB左側(cè),APPQ,過點(diǎn)QQMAB交射線AB于點(diǎn)M.設(shè)點(diǎn)P運(yùn)動的時(shí)間為t(秒)

1)用含t的代數(shù)式表示線段DM的長度;

2)求當(dāng)點(diǎn)Q落在BC邊上時(shí)t的值;

3)設(shè)△PQM與△DEB重疊部分圖形的面積為S(平方單位),當(dāng)△PQM與△DEB有重疊且重疊部分圖形是三角形時(shí),求St的函數(shù)關(guān)系式;

4)當(dāng)經(jīng)過點(diǎn)C和△PQM中一個(gè)頂點(diǎn)的直線平分△PQM的內(nèi)角時(shí),直接寫出此時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】尺規(guī)作圖特有的魅力曾使無數(shù)人沉湎其中,傳說拿破侖通過下列尺規(guī)作圖考他的大臣:①將半徑2的⊙O六等分,依次得到A,B,C,D,E,F六個(gè)分點(diǎn); ②分別以點(diǎn)A,D為圓心,AC長為半徑畫弧,G是兩弧的一個(gè)交點(diǎn);③連結(jié)OG.問:OG的長是多少?大臣給出的正確答案是_________

查看答案和解析>>

同步練習(xí)冊答案