【題目】已知某品牌的飲料有大瓶裝與小瓶裝之分某超市花了3800元購進一批該品牌的飲料共1000,其中大瓶和小瓶飲料的進價及售價如下表所示:

大瓶

小瓶

進價(/)

5

2

售價(/)

7

3

(1)該超市購進大瓶和小瓶飲料各多少瓶?

(2)在大瓶飲料售出200小瓶飲料售出100瓶后,商家決定將剩下的小瓶飲料的售價降低0.5元銷售,并把其中一定數(shù)量的小瓶飲料作為贈品在顧客一次性購買大瓶飲料時,每滿2瓶就送1瓶小瓶飲料,送完即止超市要使這批飲料售完后獲得的利潤不低于1250,那么小瓶飲料作為贈品最多只能送出多少瓶?

【答案】(1)該超市購進大瓶飲料600,小瓶飲料400(2)超市要使這批飲料售完后獲得的利潤不低于1250,那么小瓶飲料作為贈品最多只能送出80

【解析】

1)設該超市購進大瓶飲料x瓶,小瓶飲料y瓶,根據(jù):該品牌的飲料共1000瓶、購進大、小瓶飲料共花費3800列不等式組求解可得;

(2)設小瓶飲料作為贈品送出m瓶,根據(jù):大瓶飲料的銷售額+100瓶小瓶飲料銷售額+未贈送小瓶飲料銷售額-總成本≥1250,列不等式求解可得.

解:(1)設該超市購進大瓶飲料x瓶,小瓶飲料y瓶.由題意,得

解得

答:該超市購進大瓶飲料600瓶,小瓶飲料400瓶.

(2)設小瓶飲料作為贈品送出m瓶.由題意,得

7×6003×100(30.5)(300m)3800≥1250

解得m≤80.

答:超市要使這批飲料售完后獲得的利潤不低于1250元,那么小瓶飲料作為贈品最多只能送出80瓶.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,在如圖所示的網(wǎng)格中建立平面直角坐標系后,ABC三個頂點的坐標分別為A(1,1),B(4,2),C(2,4).

(1)畫出ABC關于y軸對稱的△A1B1C1;

(2)①借助圖中的網(wǎng)格,請只用直尺(不含刻度)在圖中找一點P,使得P到AB、AC的距離相等,且PA=PB.

②若x軸上有一動點Q,使得QAB的周長最小,則△QAB的最小周長為

(友情提醒:請別忘了標注宇母)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級開展“光盤行動”宣傳活動,各班級參加該活動的人數(shù)統(tǒng)計結果如下表,對于這組統(tǒng)計數(shù)據(jù),下列說法中正確的是( )

班級

1班

2班

3班

4班

5班

6班

人數(shù)

52

60

62

54

58

62


A.平均數(shù)是58
B.中位數(shù)是58
C.極差是40
D.眾數(shù)是60

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,∠B=E=40°,BAE=60°,且AD平分∠BAEBCD.

(1)求證:BD=DE;

(2)若AB=CD,求∠ACD的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】水果市場將120噸水果運往各地商家,現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運載能力和運費如下表所示:(假設每輛車均滿載)

車型

汽車運載量(噸/輛)

5

8

10

汽車運費(元/輛)

400

500

600

(1)若全部水果都用甲、乙兩種車型來運送,需運費8200元,問分別需甲、乙兩種車型各幾輛?

(2)為了節(jié)約運費,市場可以調用甲、乙、丙三種車型參與運送(每種車型至少1輛),已知它們的總輛數(shù)為16輛,你能通過列方程組的方法分別求出幾種車型的輛數(shù)嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線PD垂直平分⊙O的半徑OA于點B,PD交⊙O于點C、D,PE是⊙O的切線,E為切點,連結AE,交CD于點F.
(1)若⊙O的半徑為8,求CD的長;
(2)證明:PE=PF;
(3)若PF=13,sinA= ,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】老師想知道學生們每天在上學的路上要花多少時間,于是讓大家將每天來校上課的單程時間寫在紙上.下面是全班30名學生單程所花的時間(單位:min):

20,20,30,15,20,25,5,15,20,10,15,35,45,10,20,25,30,20,15,20,20,10,20,5,15,20,20,20,5,15.

(1)用表格將上述數(shù)據(jù)加以整理;

(2)畫出學生上學單程所花時間與次數(shù)的條形統(tǒng)計圖;

(3)根據(jù)調查結果,計算每天單程20min到校的學生有多少名?占全班學生人數(shù)的百分比是多少?你認為老師還能獲得哪些信息?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)(a-b)2(a-b)3(b-a)5 (2)(a-b+c)3(b-a-c)5(a-b+c)6

(3)(b-a)m·(b-a)n-5·(a-b)5 (4)x·xm-1+x2·xm-2-3x3·xm-3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,填空:

(1)若∠4=∠3,則_________,理由是______;

(2)若∠2=∠E,則_______,理由是____;

(3)若∠A=∠ABE=180°,則_______,理由是____;

(4)若∠2=∠____,則DA∥EB,理由是____;

(5)若∠DBC+∠_____=180°,則DB∥EC,理由是____

查看答案和解析>>

同步練習冊答案