【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點D為AB的中點.如果點P在線段BC上以3cm/s的速度由點B向C點運動,同時,點Q在線段CA上由點C向A點運動.
(1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由.
(2)若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
【答案】(1)全等,理由見解析;(2)cm/s
【解析】
試題(1)經(jīng)過1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即據(jù)SAS可證得△BPD≌△CQP.
(2)可設(shè)點Q的運動速度為x(x≠3)cm/s,經(jīng)過ts△BPD與△CQP全等,則可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,據(jù)(1)同理可得當BD=PC,BP=CQ或BD=CQ,BP=PC時兩三角形全等,求x的解即可.
解:(1)經(jīng)過1秒后,PB=3cm,PC=5cm,CQ=3cm,
∵△ABC中,AB=AC,
∴在△BPD和△CQP中,
,
∴△BPD≌△CQP(SAS).
(2)設(shè)點Q的運動速度為x(x≠3)cm/s,經(jīng)過ts△BPD與△CQP全等;則可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,
∵AB=AC,
∴∠B=∠C,
根據(jù)全等三角形的判定定理SAS可知,有兩種情況:①當BD=PC,BP=CQ時,②當BD=CQ,BP=PC時,兩三角形全等;
①當BD=PC且BP=CQ時,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情況;
②BD=CQ,BP=PC時,5=xt且3t=8﹣3t,解得:x=;
故若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為cm/s時,能夠使△BPD與△CQP全等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為直線AB上一點,∠AOC=52°,OD平分∠AOC,OD⊥OE,垂足為點O.
(1)求∠BOD的度數(shù);
(2)說明OE平分∠BOC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,已知∠B和∠C的平分線相交于點F,經(jīng)過點F作DE//BC,交AB于D,交AC于點E,若BD+CE=9,則線段DE的長為( )
A. 9 B. 8 C. 7 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寒假結(jié)束了,為了了解九年級學(xué)生寒假體育鍛煉情況,王老師調(diào)查了九年級所有學(xué)生寒假體育鍛煉時間,并隨即抽取10名學(xué)生進行統(tǒng)計,制作出如下統(tǒng)計圖表:
編號 | 成績 | 編號 | 成績 |
① | B | ⑥ | A |
② | A | ⑦ | B |
③ | B | ⑧ | C |
④ | B | ⑨ | B |
⑤ | C | ⑩ | A |
根據(jù)統(tǒng)計圖表信息解答下列問題:
(1)將條形統(tǒng)計圖補充完整;
(2)若用扇形統(tǒng)計圖來描述10名學(xué)生寒假體育鍛煉情況,分別求A,B,C三個等級對應(yīng)的扇形圓心角的度數(shù);
(3)已知這次統(tǒng)計中共有60名學(xué)生寒假體育鍛煉時間是A等,請你估計這次統(tǒng)計中B等,C等的學(xué)生各有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=60°,AB=2,E是DC邊上一個動點,F是AB邊上一點,∠AEF=30°.設(shè)DE=x,圖中某條線段長為y,y與x滿足的函數(shù)關(guān)系的圖象大致如圖所示,則這條線段可能是圖中的( ).
A. 線段EC B. 線段AE C. 線段EF D. 線段BF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點M在CD邊上,點N在正方形ABCD外部,且滿足∠CMN=90°,CM=MN.連接AN,CN,取AN的中點E,連接BE,AC,交于F點.
(1) ①依題意補全圖形;
②求證:BE⊥AC.
(2)請?zhí)骄烤段BE,AD,CN所滿足的等量關(guān)系,并證明你的結(jié)論.
(3)設(shè)AB=1,若點M沿著線段CD從點C運動到點D,則在該運動過程中,線段EN所掃過的面積為______________(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,點E、F分別在AB、BC上,△DEF為等腰直角三角形,∠DEF=90°,AD+CD=10,AE=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年某月的月歷上圈出了相鄰的三個數(shù)a、b、c,并求出了它們的和為39,這三個數(shù)在月歷中的排布不可能是( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com