【題目】將△ABC的邊AB繞點A順時針旋轉(zhuǎn)α得到AB′,邊AC繞點A逆時針旋轉(zhuǎn)β得到AC′,α+β=180°.連接B′C′,作△AB′C′的中線AD.
(初步感知)
(1)如圖①,當∠BAC=90°,BC=4時,AD的長為______;
(探索證明)
(2)如圖②,△ABC為任意三角形時,猜想AD與BC的數(shù)量關系,并證明;
(應用延伸)
(3)如圖③,已知等腰△ACB,AC=BC=m,延長AC到D,延長CB到E,使CD=CE=n,將△CED繞C順時針旋轉(zhuǎn)一周得到△CE′D′,連接BE′、AD′,若∠CBE′=90°,求AD′的長度(用含m、n的代數(shù)式表示).
【答案】(1)2;(2)(2)AD=BC,理由見解析;(3)AD′=.
【解析】(1)首先證明△BAC≌△B′AC′,根據(jù)直角三角形斜邊中線定理即可解決問題;
(2)結(jié)論:AD=BC.如圖,延長AD到E,使得DE=AD,連接B′E,C′E,首先證明四邊形AC′EB′是平行四邊形,再證明△BAC≌△AB′E,即可解決問題;
(3)分情況進行討論即可得.
(1)∵∠BAC=90°,∠BAC+∠B′AC′=180°,
∴∠B′AC′=∠BAC=90°,
∵AB=AB′,AC=AC′,
∴△BAC≌△B′AC′,
∴BC=B′C′,
∵B′D=DC′,
∴AD=B′C′=BC==2,
故答案為:2;
(2)AD=BC,理由如下:
如圖,延長AD至點E,使得DE=AD,
∵B′D=C′D,∴四邊形AC′EB′為平行四邊形,
∴B′E∥AC′,B′E=AC′=AC,∴∠AB′E+∠B′AC′=180°,
∵α+β=180°,∴∠BAC+∠B′AC′=180°,∴∠AB′E=∠BAC,
∵AB′=AB,∴△AB′E≌△BAC,∴AE=BC,
∴AD=AE=BC;
(3)情況一:如圖,過點C作△BCE′的中線CF,
在Rt△BCE′中,由勾股定理
得:;
∴BF=BE′=,
在Rt△BCF中,由勾股定理得:CF===,
由(2)可知:AD′=;
情況二:如圖,作△CBE′的中線CF并延長到G,使FG=CF,連接BG、E′G,
∵BF=E′F,CF=GF,∴四邊形BCE′G為平行四邊形,
∴BC=GE′,BC∥GE′,∵BC=AC,∴AC=GE′,
由旋轉(zhuǎn)可知∠1=∠BCE′,∵∠1+∠ACD′=180°,∠GE′C+∠BCE′=180°,∴∠ACD′=∠GE′C,
∵CD′=E′C,∴△ACD′≌△GE′C,∴AD′=GC
由情況一可知:BE′=,AD′=.
科目:初中數(shù)學 來源: 題型:
【題目】按下面的程序計算,當輸入x=100時,輸出結(jié)果為501;當輸入x=20時,輸出結(jié)果為506;如果開始輸入的值x為正數(shù),最后輸出的結(jié)果為656,那么滿足條件的x的值最多有( 。
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】實踐操作:在矩形ABCD中,AB=4,AD=3,現(xiàn)將紙片折疊,點D的對應點記為點P,折痕為EF(點E、F是折痕與矩形的邊的交點),再將紙片還原.
初步思考:
(1)若點P落在矩形ABCD的邊AB上(如圖①)
①當點P與點A重合時,∠DEF= °;當點E與點A重合時,∠DEF= °;
②當點E在AB上,點F在DC上時(如圖②),
求證:四邊形DEPF為菱形,并直接寫出當AP=3.5時的菱形EPFD的邊長.
深入探究
(2)若點P落在矩形ABCD的內(nèi)部(如圖③),且點E、F分別在AD、DC邊上,請直接寫出AP的最小值 .
拓展延伸
(3)若點F與點C重合,點E在AD上,線段BA與線段FP交于點M(如圖④).在各種不同的折疊位置中,是否存在某一情況,使得線段AM與線段DE的長度相等?若存在,請直接寫出線段AE的長度;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D是AB邊上一點,以BD為直徑的⊙O與邊AC相切于點E,連結(jié)DE并延長,與BC的延長線交于點F.
(1)求證:BD=BF;
(2)若BC=6,AD=4,求sinA的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,從一艘船的點A處觀測海岸上高為41m的燈塔BC(觀測點A與燈塔底部C在一個水平面上),測得燈塔頂部B的仰角為35°,則觀測點A到燈塔BC的距離為 . (精確到1m)
【參考數(shù)據(jù):sin35°≈0.6,cos35°≈0.8,tan35°≈0.7】
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,CA=CB=2,CD⊥AB于D,點P是線段CD上的一個動點,以點P為直角頂點向下作等腰直角△PBE,
連接DE ,則DE的最小值為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為響應“學雷鋒、樹新風、做文明中學生”號召,某校開展了志愿者服務活動,活動項目有“戒毒宣傳”、“文明交通崗”、“關愛老人”、“義務植樹”、“社區(qū)服務”等五項,活動期間,隨機抽取了部分學生對志愿者服務情況進行調(diào)查,結(jié)果發(fā)現(xiàn),被調(diào)查的每名學生都參與了活動,最少的參與了1項,最多的參與了5項,根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖.
(1)被隨機抽取的學生共有多少名?
(2)在扇形統(tǒng)計圖中,求活動數(shù)為3項的學生所對應的扇形圓心角的度數(shù),并補全折線統(tǒng)計圖;
(3)該校共有學生2000人,估計其中參與了4項或5項活動的學生共有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD中點,將△ABE沿直線BE折疊后得到△GBE,延長BG交CD于F,若AB=6,BC=,則CF的長為_______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形中,,點在邊上,且,將沿對折至,延長交邊于點,連接、.則下列結(jié)論:①≌;②;③∥;④.其中正確的是( )
A. ①② B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com