如圖①,已知二次函數(shù)的解析式是y=ax2+bx(a>0),頂點為A(1,-1).
(1)a=   ;
(2)若點P在對稱軸右側(cè)的二次函數(shù)圖像上運動,連結(jié)OP,交對稱軸于點B,點B關(guān)于頂點A的對稱點為C,連接PC、OC,求證:∠PCB=∠OCB;
(3)如圖②,將拋物線沿直線y=-x作n次平移(n為正整數(shù),n≤12),頂點分別為A1,A2,…,An,橫坐標(biāo)依次為1,2,…,n,各拋物線的對稱軸與x軸的交點分別為D1,D2,…,Dn,以線段AnDn為邊向右作正方形AnDnEnFn,是否存在點Fn恰好落在其中的一個拋物線上,若存在,求出所有滿足條件的正方形邊長;若不存在,請說明理由.

(1)1;(2)證明見解析;(3)2,6.

解析試題分析:(1)直接利用頂點坐標(biāo),進而代入求出即可;
(2)根據(jù)題意得出,,進而得出△ODC∽△PHC,求出即可;
(3)由題意得出:A1(1,-1),A2(2,-2),A3(3,-3),…An(n,-n),進而得出F1(2,-1),F(xiàn)2(4,-2),F(xiàn)3(6,-3),…Fn(2n,-n)..,即可分類討論得出n的值.
試題解析:(1)解:∵二次函數(shù)的解析式是y=ax2+bx(a>0),頂點為A(1,-1),
,
解得:

(2)證明:由(1)得,拋物線的解析式為:y=x2-2x,
設(shè)P(m,m2-2m),則直線OP的解析式為:y=(m-2)x,
∴B(1,m-2),∴C(1,-m),
過點P作PH⊥CD于點H,則PH=m-1,CH=m2-m,
,
∵∠ODC=∠PHC,
∴△ODC∽△PHC,
∴∠PCB=∠OCB;
(3)解:由題意得出:A1(1,-1),A2(2,-2),A3(3,-3),…An(n,-n),
∴F1(2,-1),F(xiàn)2(4,-2),F(xiàn)3(6,-3),…Fn(2n,-n)…
若Fn恰好落在其中的第m個拋物線上(m為正整數(shù),m≤12),
則該拋物線解析式為:y=(x-m)2-m,
將Fn代入得:-n=(2n-m)2-m,
即(2n-m)2=m-n,
∴m-n是一個平方數(shù),只能是0,1,4,9,
當(dāng)m-n=0時,2n-m=0,∴m=n=0(舍去);
當(dāng)m-n=1時,2n-m=1或-1,∴n=2或0(舍去);
當(dāng)m-n=4時,2n-m=2或-2,∴n=2或6;
當(dāng)m-n=9時,2n-m=3或-3,∴n=6(舍去)或12(舍去).
綜上所述,正方形邊長n的值可以是2,6.
考點:二次函數(shù)綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

為深化“攜手節(jié)能低碳,共建碧水藍天”活動,發(fā)展“低碳經(jīng)濟”,某單位進行技術(shù)革新,讓可再生資源重新利用.今年1月份,再生資源處理量為40噸,從今年1月1日起,該單位每月再生資源處理量每一個月將提高10噸.月處理成本(元)與月份之間的關(guān)系可近似地表示為:,每處理一噸再生資源得到的新產(chǎn)品的售價定為100元.若該單位每月再生資源處理量為y(噸),每月的利潤為w(元).
(1)分別求出y與x,w與x的函數(shù)關(guān)系式;
(2)在今年內(nèi)該單位哪個月獲得利潤達到5800元?
(3)隨著人們環(huán)保意識的增加,該單位需求的可再生資源數(shù)量受限.今年三月的再生資源處理量比二月份減少了m%,該新產(chǎn)品的產(chǎn)量也隨之減少,其售價比二月份的售價增加了%.四月份,該單位得到國家科委的技術(shù)支持,使月處理成本比二月份的降低了%.如果該單位四月份在保持三月份的再生資源處理量和新產(chǎn)品售價的基礎(chǔ)上,其利潤比二月份的利潤減少了60元,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.下列結(jié)論:①;②時,;③平行于x軸的直線與兩條拋物線有四個交點;④2AB=3AC.其中錯誤結(jié)論的個數(shù)是(   )

A.1      B.2      C.3           D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某賓館有30個房間供游客住宿,當(dāng)每個房間的房價為每天120元時,房間會全部住滿.當(dāng)每個房間每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每天支出20元的各種費用.根據(jù)規(guī)定,每個房間每天的房價不得高于210元.設(shè)每個房間的房價增加x元(x為10的正整數(shù)倍).
(1)設(shè)一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

實驗數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5時內(nèi)其血液中酒精含量y(毫克/百毫升)與時間(時)的關(guān)系可近似地用二次函數(shù)刻畫;1.5時后(包括1.5時)y與x可近似地用反比例函數(shù)(k>0)刻畫(如圖所示).
(1)根據(jù)上述數(shù)學(xué)模型計算:
①喝酒后幾時血液中的酒精含量達到最大值?最大值為多少?
②當(dāng)=5時,y=45.求k的值.
(2)按國家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線AB:與拋物線交于A、B兩點,
(1)直線AB總經(jīng)過一個定點C,請直接寫出點C坐標(biāo);
(2)當(dāng)時,在直線AB下方的拋物線上求點P,使△ABP的面積等于5;
(3)若在拋物線上存在定點D使∠ADB=90°,求點D到直線AB的最大距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知兩點A(-1,0),B(4,0),以AB為直徑的半圓P交y軸于點C.
(1)求經(jīng)過A、B、C三點的拋物線的解析式;
(2)設(shè)弦AC的垂直平分線交OC于D,連接AD并延長交半圓P于點E,相等嗎?請證明你的結(jié)論;
(3)設(shè)點M為x軸負(fù)半軸上一點,OM=AE,是否存在過點M的直線,使該直線與(1)中所得的拋物線的兩個交點到y(tǒng)軸的距離相等?若存在,求出這條直線對應(yīng)函數(shù)的解析式;若不存在.請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(11分)如圖,已知拋物線y=x2+bx+c經(jīng)過A(-1,0)、B(4,5)兩點,過點B作BC⊥x軸,垂足為C.
(1)求拋物線的解析式;
(2)求tan∠ABO的值;
(3)點M是拋物線上的一個點,直線MN平行于y軸交直線AB于N,如果以M、N、B、C為頂點的四邊形是平行四邊形,求出點M的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,直線y=﹣x+n與x軸、y軸分別交于B、C兩點,拋物線y=ax2+bx+3(a≠0)過C、B兩點,交x軸于另一點A,連接AC,且tan∠CAO=3.
(1)求拋物線的解析式;
(2)若點P是射線CB上一點,過點P作x軸的垂線,垂足為H,交拋物線于Q,設(shè)P點橫坐標(biāo)為t,線段PQ的長為d,求出d與t之間的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量t的取值范圍;
(3)在(2)的條件下,當(dāng)點P在線段BC上時,設(shè)PH=e,已知d,e是以y為未知數(shù)的一元二次方程:y2-(m+3)y+(5m2-2m+13)="0" (m為常數(shù))的兩個實數(shù)根,點M在拋物線上,連接MQ、MH、PM,且.MP平分∠QMH,求出t值及點M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案