(1)證明:連接DF,
∵CD是圓直徑∴∠CFD=90°即DF⊥BC,
∵∠ACB=90°,∴DF∥AC,
∴∠BDF=∠A,
∵在⊙O中∠BDF=∠GEF,∴∠GEF=∠A.
(2)解:∵D是Rt△ABC斜邊AB的中點,
∴DC=DA,
∴∠DCA=∠A,
又由(1)知∠GEF=∠A∴∠DCA=∠GEF,
又∵∠OME=∠EMC,
∴△OME∽△EMC相似,
∴
∴ME
2=OM×MC,
又∵ME=
∴OM×MC=
=96,
∵MD:CO=2:5,
∴OM:MD=3:2,∴OM:MC=3:8,
設(shè)OM=3xMC=8x,
∴3x×8x=96,
∴x=2,
直徑CD=10x=20.
(3)解:∵Rt△ABC斜邊AB的中線CD=20,
∴AB=40,
∵在Rt△ABC中,cos∠B=0.6=
,∴BC=24,
∴AC=32,
設(shè)直線AB的函數(shù)表達式為y=kx+b根據(jù)題意得A(32,0)B(0,24),
b=24,0×k+b=24解得
,32×k+b=0,
∴直線AB的函數(shù)解析式為y=-
x+24.
分析:(1)連接DF,根據(jù)CD是圓直徑,可知∠CFD=90°即DF⊥BC,DF∥AC,推出∠BDF=∠A,在⊙O中∠BDF=∠GEF,所以∠GEF=∠A;
(2)根據(jù)D是Rt△ABC斜邊AB的中點,DC=DA,∠DCA=∠A,可證明△OME與△EMC相似,所以,ME
2=OM×MC,結(jié)合MD:CO=2:5,OM:MD=3:2,OM:MC=3:8,設(shè)OM=3xMC=8x,可求x=2,則直徑CD=10x=20;
(3)根據(jù)Rt△ABC斜邊AB的中線CD=20可求得AB=40,cos∠B=0.6,BC=24,AC=32.設(shè)直線AB的函數(shù)表達式為y=kx+b把A(32,0)B(0,24)代入利用待定系數(shù)法求得,直線AB的函數(shù)解析式為y=-
x+24.
點評:主要考查了函數(shù)和幾何圖形的綜合運用.
解題的關(guān)鍵是會靈活的運用函數(shù)圖象的性質(zhì)和交點的意義求出相應(yīng)的線段的長度或表示線段的長度,再結(jié)合具體圖形的性質(zhì)求解.