【題目】如圖,AC是半圓O的一條弦,以弦AC為折線將弧AC折疊后過(guò)圓心O,⊙O的半徑為2,則圓中陰影部分的面積為 .
【答案】
【解析】解:過(guò)點(diǎn)O作OE⊥AC,交AC于D,連接OC,BC, ∵OD=DE= OE= OA,
∴∠A=30°,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠B=60°,
∵OB=OC=2,
∴△OBC是等邊三角形,
∴OC=BC,
∴弓形OC面積=弓形BC面積,
∴陰影部分面積=S△OBC= ×2× = .
所以答案是:
【考點(diǎn)精析】通過(guò)靈活運(yùn)用扇形面積計(jì)算公式和翻折變換(折疊問(wèn)題),掌握在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2);折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BD⊥AC于點(diǎn)D,CE⊥AB于點(diǎn)E,BD,CE交于點(diǎn)O,F(xiàn)為BC的中點(diǎn),連接EF,DF,DE,則下列結(jié)論:①EF=DF;②ADAC=AEAB;③△DOE∽△COB;④若∠ABC=45°時(shí),BE= FC. 其中正確的是(把所有正確結(jié)論的序號(hào)都選上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,AC是⊙O的弦,過(guò)點(diǎn)C作⊙O的切線交BA的延長(zhǎng)線于點(diǎn)P,連接BC.
(1)求證:∠PCA=∠B;
(2)填空:已知∠P=40°,AB=12cm,點(diǎn)Q在 上,從點(diǎn)A開(kāi)始以πcm/s的速度逆時(shí)針運(yùn)動(dòng)到點(diǎn)C停止,設(shè)運(yùn)動(dòng)時(shí)間為ts. ①當(dāng)t=時(shí),以點(diǎn)A、Q、B、C為頂點(diǎn)的四邊形面積最大;
②當(dāng)t=時(shí),四邊形AQBC是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的頂點(diǎn)A在第一象限,AB∥x軸,AD∥y軸,且對(duì)角線的交點(diǎn)與原點(diǎn)O重合.在邊AB從小于AD到大于AD的變化過(guò)程中,若矩形ABCD的周長(zhǎng)始終保持不變,則經(jīng)過(guò)動(dòng)點(diǎn)A的反比例函數(shù)y= (k≠0)中k的值的變化情況是( )
A.一直增大
B.一直減小
C.先增大后減小
D.先減小后增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx過(guò)A(4,0),B(1,3)兩點(diǎn),點(diǎn)C、B關(guān)于拋物線的對(duì)稱軸對(duì)稱,過(guò)點(diǎn)B作直線BH⊥x軸,交x軸于點(diǎn)H.
(1)求拋物線的表達(dá)式;
(2)直接寫(xiě)出點(diǎn)C的坐標(biāo),并求出△ABC的面積;
(3)點(diǎn)P是拋物線上一動(dòng)點(diǎn),且位于第四象限,當(dāng)△ABP的面積為6時(shí),求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AC、EC分別為四邊形ABCD和EFCG的對(duì)角線,點(diǎn)E在△ABC內(nèi),∠CAE+∠CBE=90°,當(dāng)四邊形ABCD和EFCG均為正方形時(shí),連接BF.
(1)求證:△CAE∽△CBF;
(2)若BE=1,AE=2,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的頂點(diǎn)F是AB中點(diǎn),兩邊FD,F(xiàn)E分別交AC,BC于點(diǎn)D,E兩點(diǎn),當(dāng)∠DFE在△ABC內(nèi)繞頂點(diǎn)F旋轉(zhuǎn)時(shí)(點(diǎn)D不與A,C重合),給出以下個(gè)結(jié)論:①CD=BE ②四邊形CDFE不可能是正方形 ③△DFE是等腰直角三角形 ④S四邊形CDFE= S△ABC , 上述結(jié)論中始終正確的有( )
A.①②③
B.②③④
C.①③④
D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到△A1B1C,連結(jié)AA1 , 若∠AA1B1=15°,則∠B的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形ABCD沿GH對(duì)折,點(diǎn)C落在Q處,點(diǎn)D落在E處,EQ與BC相交于F.若AD=8cm,AB=6cm,AE=4cm.則△EBF的周長(zhǎng)是cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com