△ABC是一張等腰直角三角形紙板,∠C=Rt∠,AC=BC=2,圖1中剪法稱為第1次剪取,記所得正方形面積為S1;按照這種剪法,在余下的△ADE和△BDF中,分別剪取正方形,得到兩個相同的正方形,稱為第2次剪取,并記這兩個正方形面積和為S2(如圖2),繼續(xù)操作下去,則第n次剪取時,Sn=


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
B
分析:根據(jù)題意,可求得S△AED+S△DBF=S正方形ECFD=S1=1,同理可得規(guī)律:Sn即是第n次剪取后剩余三角形面積和,根據(jù)此規(guī)律求解即可答案.
解答:∵四邊形ECFD是正方形,
∴DE=EC=CF=DF,∠AED=∠DFB=90°,
∵△ABC是等腰直角三角形,
∴∠A=∠C=45°,
∴AE=DE=EC=DF=BF=EC=CF,
∵AC=BC=2,
∴DE=DF=1,
∴S△AED+S△DBF=S正方形ECFD=S1=1;
同理:S2即是第二次剪取后剩余三角形面積和,
Sn即是第n次剪取后剩余三角形面積和,
∴第一次剪取后剩余三角形面積和為:2-S1=1=S1,
第二次剪取后剩余三角形面積和為:S1-S2=1-==S2
第三次剪取后剩余三角形面積和為:S2-S3=-==S3,

第n次剪取后剩余三角形面積和為:Sn-1-Sn=Sn=
故選B.
點評:本題考查了勾股定理,等腰直角三角形的性質(zhì)和學生數(shù)學方法--從特殊到一般的運用,并要求靈活運用正方形的性質(zhì)、勾股定理、等腰直角三角形的性質(zhì)等,難度程度適中.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖所示,Rt△ABC是一張放在平面直角坐標系中的紙片,點C與原點O重合,點A在x軸的正半軸上,點B在y軸的正半軸上,已知OA=3,OB=4.將紙片的直角部分翻折,使點C落在精英家教網(wǎng)AB邊上,記為D點,AE為折痕,E在y軸上.
(1)在如圖所示的直角坐標系中,求E點的坐標及AE的長.
(2)線段AD上有一動點P(不與A、D重合)自A點沿AD方向以每秒1個單位長度向D點作勻速運動,設(shè)運動時間為t秒(0<t<3),過P點作PM∥DE交AE于M點,過點M作MN∥AD交DE于N點,求四邊形PMND的面積S與時間t之間的函數(shù)關(guān)系式,當t取何值時,S有最大值?最大值是多少?
(3)當t(0<t<3)為何值時,A、D、M三點構(gòu)成等腰三角形?并求出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:△ABC是一張等腰直角三角形紙板,∠B=90°,AB=BC=1.
(1)要在這張紙板上剪出一個正方形,使這個正方形的四個頂點都在△ABC的邊上.小林設(shè)計出了一種剪法,如圖1所示.請你再設(shè)計出一種不同于圖1的剪法,并在圖2中畫出來.
(2)若按照小林設(shè)計的圖1所示的剪法來進行裁剪,記圖1為第一次裁剪,得到1個正方形,將它的面積記為S1,則S1=
1
4
1
4
;在余下的2個三角形中還按照小林設(shè)計的剪法進行第二次裁剪(如圖3),得到2個新的正方形,將此次所得2個正方形的面積的和記為S2,則S2=
1
8
1
8
;在余下的4個三角形中再按照小林設(shè)計的剪法進行第三次裁剪(如圖4),得到4個新的正方形,將此次所得4個正方形的面積的和記為S3;按照同樣的方法繼續(xù)操作下去…,第n次裁剪得到
2n-1
2n-1
個新的正方形,它們的面積的和Sn=
1
2n+1
1
2n+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011貴州六盤水,25,16分)如圖10所示,Rt△ABC是一張放在平面直角坐標系中的紙片,點C與原點O重合,點A在x軸的正半軸上,點B在y軸的正半軸上,已知OA=3,OB=4。將紙片的直角部分翻折,使點C落在AB邊上,記為D點,AE為折痕,E在y軸上。

(1)在圖10所示的直角坐標系中,求E點的坐標及AE的長。

(2)線段AD上有一動點P(不與A、D重合)自A點沿AD方向以每秒1個單位長度向D點作勻速運動,設(shè)運動時間為t秒(0<t<3),過P點作PM∥DE交AE于M點,過點M作MN∥AD交DE于N點,求四邊形PMND的面積S與時間t之間的函數(shù)關(guān)系式,當t取何值時,S有最大值?最大值是多少?

(3)當t(0<t<3)為何值時,A、D、M三點構(gòu)成等腰三角形?并求出點M的坐標。

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011貴州六盤水,25,16分)如圖10所示,Rt△ABC是一張放在平面直角坐標系中的紙片,點C與原點O重合,點A在x軸的正半軸上,點B在y軸的正半軸上,已知OA=3,OB=4。將紙片的直角部分翻折,使點C落在AB邊上,記為D點,AE為折痕,E在y軸上。
(1)在圖10所示的直角坐標系中,求E點的坐標及AE的長。
(2)線段AD上有一動點P(不與A、D重合)自A點沿AD方向以每秒1個單位長度向D點作勻速運動,設(shè)運動時間為t秒(0<t<3),過P點作PM∥DE交AE于M點,過點M作MN∥AD交DE于N點,求四邊形PMND的面積S與時間t之間的函數(shù)關(guān)系式,當t取何值時,S有最大值?最大值是多少?
(3)當t(0<t<3)為何值時,A、D、M三點構(gòu)成等腰三角形?并求出點M的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(貴州六盤水卷)數(shù)學 題型:解答題

(2011貴州六盤水,25,16分)如圖10所示,Rt△ABC是一張放在平面直角坐標系中的紙片,點C與原點O重合,點A在x軸的正半軸上,點B在y軸的正半軸上,已知OA=3,OB=4。將紙片的直角部分翻折,使點C落在AB邊上,記為D點,AE為折痕,E在y軸上。

(1)在圖10所示的直角坐標系中,求E點的坐標及AE的長。

(2)線段AD上有一動點P(不與A、D重合)自A點沿AD方向以每秒1個單位長度向D點作勻速運動,設(shè)運動時間為t秒(0<t<3),過P點作PM∥DE交AE于M點,過點M作MN∥AD交DE于N點,求四邊形PMND的面積S與時間t之間的函數(shù)關(guān)系式,當t取何值時,S有最大值?最大值是多少?

(3)當t(0<t<3)為何值時,A、D、M三點構(gòu)成等腰三角形?并求出點M的坐標。

 

查看答案和解析>>

同步練習冊答案