如圖,平面直角坐標(biāo)系中,直線與x軸交于點(diǎn)A,與雙曲線在第一象限內(nèi)交于點(diǎn)B,BC丄x軸于點(diǎn)C,OC=2AO.求雙曲線的解析式.

解:∵直線與x軸交于點(diǎn)A的坐標(biāo)為(﹣1,0),∴OA=1。
又∵OC=2OA,∴OC=2。∴點(diǎn)B的橫坐標(biāo)為2,代入直線,得y=。∴B(2,)。
∵點(diǎn)B在雙曲線上,∴k=xy=2×=3。
∴雙曲線的解析式為。

解析試題分析:根據(jù)一次函數(shù)與雙曲線圖象的交點(diǎn)和OC=2AO求得C點(diǎn)的坐標(biāo),然后代入一次函數(shù)求得點(diǎn)B的坐標(biāo),進(jìn)一步求得反比例函數(shù)的解析式即可!

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,是一輛小汽車沿一條高速公路勻速前進(jìn)的時(shí)間t(小時(shí))與速度x(千米/時(shí))關(guān)系的圖象,根據(jù)圖象提供的信息回答下列問題:

(1)這條高速公路的全長是多少千米?
(2)寫出速度與時(shí)間之間的函數(shù)關(guān)系.
(3)汽車最大速度可以達(dá)到多少?
(4)汽車最慢用幾個小時(shí)可以到達(dá)?如果要在3小時(shí)以內(nèi)到達(dá),汽車的速度應(yīng)不少于多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:正比例函數(shù)的圖象于反比例函數(shù)的圖象交于點(diǎn)M(a,1),MN⊥x軸于點(diǎn)N(如圖),若△OMN的面積等于2,求這兩個函數(shù)的解析式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,制作一種產(chǎn)品的同時(shí),需將原材料加熱,設(shè)該材料溫度為y℃,從加熱開始計(jì)算的時(shí)間為x分鐘.據(jù)了解,該材料在加熱過程中溫度y與時(shí)間x成一次函數(shù)關(guān)系,已知該材料在加熱前的溫度為l5℃,加熱5分鐘使材料溫度達(dá)到60℃時(shí)停止加熱,停止加熱后,材料溫度逐漸下降,這時(shí)溫度y與時(shí)間x成反比例函數(shù)關(guān)系.

(1)分別求出該材料加熱和停止加熱過程中y與x的函數(shù)關(guān)系(要寫出x的取值范圍);
(2)根據(jù)工藝要求,在材料溫度不低于30℃的這段時(shí)間內(nèi),需要對該材料進(jìn)行特殊處理,那么對該材料進(jìn)行特殊處理所用的時(shí)間為多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,科技小組準(zhǔn)備用材料圍建一個面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長為12m。設(shè)AD的長為xm,DC的長為ym。

(1)求y與x之間的函數(shù)關(guān)系式;
(2)若圍成矩形科技園ABCD的三邊材料總長不超過26m,材料AD和DC的長都是整米數(shù),求出滿足條件的所有圍建方案。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,反比例函數(shù)(x>0)的圖象和矩形ABCD的第一象限,AD平行于x軸,且AB=2,AD=4,點(diǎn)A的坐標(biāo)為(2,6) .

(1)直接寫出B、C、D三點(diǎn)的坐標(biāo);
(2)若將矩形向下平移,矩形的兩個頂點(diǎn)恰好同時(shí)落在反比例函數(shù)的圖象上,猜想這是哪兩個點(diǎn),并求矩形的平移距離和反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線與雙曲線交于C、D兩點(diǎn),與x軸交于點(diǎn)A.

(1)求n的取值范圍和點(diǎn)A的坐標(biāo);
(2)過點(diǎn)C作CB⊥y軸,垂足為B,若S ABC=4,求雙曲線的解析式;
(3)在(1)、(2)的條件下,若AB=,求點(diǎn)C和點(diǎn)D的坐標(biāo)并根據(jù)圖象直接寫出反比例函數(shù)的值小于一次函數(shù)的值時(shí),自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,正比例函數(shù)的圖象與反比例函數(shù)(k≠0)在第一象限的圖象交于A點(diǎn),過A點(diǎn)作x軸的垂線,垂足為M,已知△OAM的面積為1.
(1)求反比例函數(shù)的解析式;
(2)如果B為反比例函數(shù)在第一象限圖象上的點(diǎn)(點(diǎn)B與點(diǎn)A不重合),且B點(diǎn)的橫坐標(biāo)為1,在x軸上找一點(diǎn)P,使PA+PB最。驪點(diǎn)坐標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖所示,是一個正方體的平面展開圖,當(dāng)把它折成一個正方體時(shí),與空白面相對的字應(yīng)該是  

查看答案和解析>>

同步練習(xí)冊答案