【題目】要在一塊長(zhǎng)52 m,寬48 m的矩形綠地上,修建同樣寬的兩條互相垂直的甬路,下面分別是小亮和小穎的設(shè)計(jì)方案.
(1)求小亮設(shè)計(jì)方案中甬路的寬度x;
(2)求小穎設(shè)計(jì)方案中四塊綠地的總面積.(友情提示:小穎設(shè)計(jì)方案中的x與小亮設(shè)計(jì)方案中的x取值相同)
【答案】(1) 小亮設(shè)計(jì)方案中甬路的寬度為2m;(2) 2299m2.
【解析】試題分析:(1)利用平移把互相垂直的小路分別移到左側(cè)和下面,表示出綠地的長(zhǎng)和寬,建立綠地面積的一元二次方程求解;(2)由上題知道了甬路的寬,此題綠地面積應(yīng)該等于矩形面積減去兩個(gè)平行四邊形的面積再加上兩個(gè)平行四邊形重合的小正方形的面積,因?yàn)閮蓷l甬路為平行四邊形,所以求出平行四邊形的高是解決問(wèn)題的關(guān)鍵,過(guò)A點(diǎn)作CD邊上的高,利用60度的正弦值求出高,即可求出綠地面積.
試題解析:(1)由題意可得,綠地的長(zhǎng)為(52-x)m,綠地的寬為(48-x)m,因?yàn)榫G地面積共2300平方米,所以列方程得:(52-x)(48-x)=2300,去括號(hào)得:x2-100x+196=0,解得:x1=2,x2=98(不合題意舍去),所以x=2,即甬路的寬度為2m;(2)過(guò)A點(diǎn)作AI⊥CD,HJ⊥EF,垂足分別為I,J,因?yàn)?/span>AB∥CD,∠1=60°,所以∠ADI=60°,因?yàn)?/span>BC∥AD,所以四邊形ADCB為平行四邊形,所以BC=AD,由上題得甬路x=2,所以BC=HE=2=AD,在Rt△ADI中,AI=2sin60°=,所以綠地面積應(yīng)該等于矩形面積減去兩個(gè)平行四邊形的面積再加上兩個(gè)平行四邊形重合的小正方形的面積,即為52×48-52×2-48×2+=2496-104-96+3=2299(平方米).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:隨著人們認(rèn)識(shí)的不斷深入,畢達(dá)哥拉斯學(xué)派逐漸承認(rèn)不是有理數(shù),并給出了證明.假設(shè)是有理數(shù),那么存在兩個(gè)互質(zhì)的正整數(shù)p,q,使得,于是,兩邊平方得p2=2q2 . 因?yàn)?/span>2q2是偶數(shù),所以p2是偶數(shù),而只有偶數(shù)的平方才是偶數(shù),所以p也是偶數(shù).因此可設(shè)p=2s,代入上式,得4s2=2q2 , 即q2=2s2 , 所以q也是偶數(shù),這樣,p和q都是偶數(shù),不互質(zhì),這與假設(shè)p,q互質(zhì)矛盾,這個(gè)矛盾說(shuō)明, 不能寫(xiě)成分?jǐn)?shù)的形式,即不是有理數(shù).請(qǐng)你有類似的方法,證明不是有理數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近似數(shù)7.5精確到________位,它表示大于或等于7.45而小于________的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校計(jì)劃用104 000元購(gòu)置一批電腦(這批款項(xiàng)須恰好用完,不得剩余或追加).經(jīng)過(guò)招標(biāo),其中平板電腦每臺(tái)1600元,臺(tái)式電腦每臺(tái)4000元,筆記本電腦每臺(tái)4600元.
(1)若學(xué)校同時(shí)購(gòu)進(jìn)其中兩種不同類型的電腦共50臺(tái),請(qǐng)你幫學(xué)校設(shè)計(jì)該如何購(gòu)買;
(2)若學(xué)校同時(shí)購(gòu)進(jìn)三種不同類型的電腦共26臺(tái)(三種類型的電腦都有),并且要求筆記本電腦的購(gòu)買量不少于15臺(tái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,BC=8cm,AC=6cm,點(diǎn)E是BC的中點(diǎn),動(dòng)點(diǎn)P從A點(diǎn)出發(fā),先以每秒2cm的速度沿A→C運(yùn)動(dòng),然后以1cm/s的速度沿C→B運(yùn)動(dòng).若設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間是t秒,那么當(dāng)t=_______,△APE的面積等于8.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義運(yùn)算“@”的運(yùn)算法則為:x@y=,如4@64==2+4=6.
(1)計(jì)算9@(-8);
(2)計(jì)算(4@8)@125;
(3)運(yùn)算“@”滿足交換律嗎?若不滿足,請(qǐng)舉例說(shuō)明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=2,O為對(duì)角線AC的中點(diǎn),點(diǎn)P、Q分別從A和B兩點(diǎn)同時(shí)出發(fā),在邊AB和BC上勻速運(yùn)動(dòng),并且同時(shí)到達(dá)終點(diǎn)B、C,連接PO、QO并延長(zhǎng)分別與CD、DA交于點(diǎn)M、N.在整個(gè)運(yùn)動(dòng)過(guò)程中,圖中陰影部分面積的大小變化情況是( )
A. 一直增大 B. 一直減小 C. 先減小后增大 D. 先增大后減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,己知直線l1l2,且l3和l1,l2分別交于A、B兩點(diǎn),點(diǎn)P在直線AB上
試找出之間的關(guān)系并說(shuō)明理由;
當(dāng)點(diǎn)P在A,B兩點(diǎn)間運(yùn)動(dòng)時(shí),問(wèn)之間的關(guān)系是否發(fā)生變化?
如果點(diǎn)P在A,B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí),試探究之間的關(guān)系只寫(xiě)結(jié)論,不需要說(shuō)明理由,并在備用圖①、②中畫(huà)出對(duì)應(yīng)圖形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com