如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.

(1)求證:PC是⊙O的切線;

(2)求∠P的度數(shù);

(3)點M是弧AB的中點,CM交AB于點N,AB=4,求線段BM、CM及弧BC所圍成的圖形面積.

 

【答案】

(1)根據(jù)圓的基本性質(zhì)可得∠A=∠ACO,根據(jù)圓周角定理可得∠COB=2∠A,∠COB=2∠PCB,即可證得∠A=∠ACO=∠PCB,再結(jié)合AB是⊙O的直徑即可作出判斷;(2)30°;(3)π+1

【解析】

試題分析:(1)根據(jù)圓的基本性質(zhì)可得∠A=∠ACO,根據(jù)圓周角定理可得∠COB=2∠A,∠COB=2∠PCB,即可證得∠A=∠ACO=∠PCB,再結(jié)合AB是⊙O的直徑即可作出判斷;

(2)由PC=AC可得∠A=∠P,即有∠A=∠ACO=∠P,再根據(jù)三角形的內(nèi)角和定理求解即可;

(3)由點M是半圓O的中點,可得CM是∠ACB的角平分線,即得∠BCM=45°,由(2)知∠BMC=∠A=∠P=30°,根據(jù)含30°的直角三角形的性質(zhì)可得BC==2,作BD⊥CM于D,可得CD=BD=BC=,則可得DM的長,從而可得CM的長,再根據(jù)扇形的面積公式及三角形的面積公式求解即可.

(1)∵OA=OC,

∴∠A=∠ACO

∵∠COB=2∠A,∠COB=2∠PCB

∴∠A=∠ACO=∠PCB

∵AB是⊙O的直徑   

∴∠ACO+∠OCB=90°

∴∠PCB+∠OCB=90°,即OC⊥CP

∵OC是⊙O的半徑  

∴PC是⊙O的切線;

(2)∵PC=AC,

∴∠A=∠P   

∴∠A=∠ACO=∠P

∵∠A+∠ACO+∠PCO+∠P=180°  

∴3∠P=90°

∴∠P=30°;

(3)∵點M是半圓O的中點,

∴CM是∠ACB的角平分線,

∴∠BCM=45°

由(2)知∠BMC=∠A=∠P=30°,

∴BC==2

作BD⊥CM于D,

∴CD=BD=BC=,

∴DM=BD=

∴CM=+,

∴S△BCM=CM?BD=+1

∵∠BOC=2∠A=60°

∴弓形BmC的面積=π- 

∴線段BM、CM及弧BC所圍成的圖形面積為π+1.

考點:圓的綜合題

點評:此類問題是初中數(shù)學(xué)的重點和難點,在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長線上一點,DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,C是⊙O上一點,∠BAC的平分線交⊙O于點D,交⊙O的切線BE于點E,過點D作DF⊥AC,交AC的延長線于點F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點A,點C是
EB
的中點,則下列結(jié)論不成立的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點,且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點C,作CD⊥AD,垂足為點D,直線CD與AB的延長線交于點E.
(1)求證:直線CD為圓O的切線.
(2)當(dāng)AB=2BE,DE=2
3
時,求AD的長.

查看答案和解析>>

同步練習(xí)冊答案