作業(yè)寶一塊三角形廢料如圖所示,∠C=90°,AC=8,BC=6.用這塊廢料剪出一個矩形CDEF,其中,點(diǎn)D、E、F分別在AC、AB、BC上.當(dāng)AE為多長時使剪出的矩形CDEF面積最大,最大面積是多少?

解:∵∠C=90°,AC=8,BC=6,
∴AB==10,
∵四邊形CDEF是矩形,
∴EF∥AC.
∴△BEF∽△BAC.

設(shè)AE=x,則BE=10-x,
,
∴EF=(10-x),
同理:DE=x,
矩形CDEF的面積S=DE•EF=x•(10-x)(0<x<10)
∴當(dāng)x=5時,S有最大值為24.
分析:首先利用勾股定理求出AB的長,再根據(jù)四邊形CDEF是矩形得到EF∥AC從而得到△BEF∽△BAC,設(shè)AE=x,則BE=10-x.利用相似三角形成比例表示出EF、DE,然后表示出有關(guān)x的二次函數(shù),然后求二次函數(shù)的最值即可.
點(diǎn)評:本題考查了相似三角形的應(yīng)用及二次函數(shù)的應(yīng)用,解題的關(guān)鍵是從幾何問題中整理出二次函數(shù)模型,并利用二次函數(shù)的知識求最值
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

一塊三角形廢料如圖所示,∠A=30°,∠C=90°,BC=6.用這塊廢料剪出一精英家教網(wǎng)個平行四邊形AGEF,其中,點(diǎn)G,E,F(xiàn)分別在AB,BC,AC上.設(shè)CE=x
(1)求x=2時,平行四邊形AGEF的面積.
(2)當(dāng)x為何值時,平行四邊形AGEF的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•和平區(qū)一模)一塊三角形廢料如圖所示,∠A=30°,∠C=90°,AB=12.用這塊廢料剪出一個矩形CDEF,其中,點(diǎn)D、E、F分別在AC、AB、BC上.要使剪出的矩形CDEF面積最大,點(diǎn)E應(yīng)選在何處?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•道外區(qū)二模)一塊三角形廢料如圖所示,∠A=30°,∠C=90°,AB=6米.用這塊廢料剪出一個矩形CDEF,其中點(diǎn)D、E、F分別在AC、AB、BC上、設(shè)邊AE的長為x米,矩形CDEF的面積為S平方米.
(1)請直接寫出S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)根據(jù)(1)中的函數(shù)關(guān)系式,計(jì)算當(dāng)x為何值時S最大,并求出最大值.
參考公式:二次函數(shù)y=ax2+bx+c(a≠0),當(dāng)x=-
b
2a
時,y最大(小)值=
4ac-b2
4a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

一塊三角形廢料如圖所示,∠A=30°,∠C=90°,AB=6米.用這塊廢料剪出一個矩形CDEF,其中點(diǎn)D、E、F分別在AC、AB、BC上、設(shè)邊AE的長為x米,矩形CDEF的面積為S平方米.
(1)請直接寫出S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)根據(jù)(1)中的函數(shù)關(guān)系式,計(jì)算當(dāng)x為何值時S最大,并求出最大值.
參考公式:二次函數(shù)y=ax2+bx+c(a≠0),當(dāng)x=數(shù)學(xué)公式時,y最大(。┲=數(shù)學(xué)公式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年天津市和平區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

一塊三角形廢料如圖所示,∠A=30°,∠C=90°,AB=12.用這塊廢料剪出一個矩形CDEF,其中,點(diǎn)D、E、F分別在AC、AB、BC上.要使剪出的矩形CDEF面積最大,點(diǎn)E應(yīng)選在何處?

查看答案和解析>>

同步練習(xí)冊答案