【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:①abc0;②bac;③4a+2b+c0;④3ac;⑤a+bmam+b)(m≠1的實(shí)數(shù)),其中結(jié)論正確的有(

A.①②③B.②③⑤C.②③④D.③④⑤

【答案】B

【解析】

由拋物線對(duì)稱軸的位置判斷ab的符號(hào),由拋物線與y軸的交點(diǎn)判斷c的符號(hào),然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.

解:①∵對(duì)稱軸在y軸的右側(cè),

ab0

由圖象可知:c0

abc0,

故①不正確;

②當(dāng)x=﹣1時(shí),yab+c0

bac,

故②正確;

③由對(duì)稱知,當(dāng)x2時(shí),函數(shù)值大于0,即y4a+2b+c0,

故③正確;

④∵x=﹣1,

b=﹣2a

ab+c0,

a+2a+c0

3a<﹣c,

故④不正確;

⑤當(dāng)x1時(shí),y的值最大.此時(shí),ya+b+c,

而當(dāng)xm時(shí),yam2+bm+c,

所以a+b+cam2+bm+cm≠1),

a+bam2+bm,即a+bmam+b),

故⑤正確.

故②③⑤正確.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】墊球是排球隊(duì)常規(guī)訓(xùn)練的重要項(xiàng)目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測(cè)試的成績(jī).測(cè)試規(guī)則為每次連續(xù)接球10個(gè),每墊球到位1個(gè)記1分.

運(yùn)動(dòng)員丙測(cè)試成績(jī)統(tǒng)計(jì)表

測(cè)試序號(hào)

1

2

3

4

5

6

7

8

9

10

成績(jī)(分)

7

6

8

7

5

8

8

7

運(yùn)動(dòng)員丙測(cè)試成績(jī)的平均數(shù)和眾數(shù)都是7,

1)成績(jī)表中的___________________;

2)若在他們?nèi)酥羞x擇一位墊球成績(jī)優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰更合適?請(qǐng)用你所學(xué)過的統(tǒng)計(jì)量加以分析說明(參考數(shù)據(jù):三人成績(jī)的方差分別為、、

3)甲、乙、丙三人相互之間進(jìn)行墊球練習(xí),每個(gè)人的球都等可能的傳給其他兩人,球從乙手中傳出,球傳一次甲得到球的概率是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AFO的直徑,點(diǎn)BAF的延長(zhǎng)線上,BEO于點(diǎn)E,過點(diǎn)AACBE,交BE的延長(zhǎng)線交于點(diǎn)C,交O交于點(diǎn)D,連接AE,EFFD,DE

1)求證:EFED

2)求證:DFAF2AEEF

3)若AE4,DE2,求sinDFA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于兩點(diǎn),與軸交于點(diǎn),點(diǎn)是拋物線上一個(gè)動(dòng)點(diǎn),過點(diǎn)軸的垂線,與直線相交于點(diǎn)

1)求拋物線的解析式;

2)當(dāng)點(diǎn)在直線下方的拋物線上運(yùn)動(dòng)時(shí),線段的長(zhǎng)度是否存在最大值?存在的話,求出其最大值和此時(shí)點(diǎn)的坐標(biāo);

3)若以,,為頂點(diǎn)的四邊形為平行四邊形,求點(diǎn)的所有坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)《太原市電動(dòng)自行車管理?xiàng)l例》的規(guī)定,201951日起,未上牌的電動(dòng)自行車將禁止上路行駛,而電動(dòng)自行車上牌登記必須滿足國(guó)家標(biāo)準(zhǔn).某商店購(gòu)進(jìn)了甲.乙兩種符合國(guó)家標(biāo)準(zhǔn)的新款電動(dòng)自行車.其中甲種車總進(jìn)價(jià)為22500元,乙種車總進(jìn)價(jià)為45000元,已知乙種車每輛的進(jìn)價(jià)是甲種車進(jìn)價(jià)的1.5倍,且購(gòu)進(jìn)的甲種車比乙種車少5輛.

(1)甲種電動(dòng)自行車每輛的進(jìn)價(jià)是多少元?

(2)這批電動(dòng)自行車上市后很快銷售一空.該商店計(jì)劃按原進(jìn)價(jià)再次購(gòu)進(jìn)這兩種電動(dòng)自行車共50輛,將新購(gòu)進(jìn)的電動(dòng)自行車按照表格中的售價(jià)銷售.設(shè)新購(gòu)進(jìn)甲種車m(20m30),兩種車全部售出的總利潤(rùn)為y(不計(jì)其他成本)

ym之間的函數(shù)關(guān)系式;

商店怎樣安排進(jìn)貨方案,才能使銷售完這批電動(dòng)自行車獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

型號(hào)

售價(jià)(/)

2000

2800

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖4所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā)沿邊AC向點(diǎn)C以1cm/s的速度移動(dòng),點(diǎn)Q從C點(diǎn)出發(fā)沿CB邊向點(diǎn)B以2cm/s的速度移動(dòng).

(1)、如果P、Q同時(shí)出發(fā),幾秒鐘后,可使△PCQ的面積為8平方厘米?

(2)、點(diǎn)P、Q在移動(dòng)過程中,是否存在某一時(shí)刻,使得△PCQ的面積等于△ABC的面積的一半.若存在,求出運(yùn)動(dòng)的時(shí)間;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A、B、C三地順次在同一直線上,甲、乙兩人均騎車從A地出發(fā),向C地勻速行駛.甲比乙早出發(fā)5分鐘,甲到達(dá)B地并休息了2分鐘后,乙追上了甲.甲、乙同時(shí)從B地以各自原速繼續(xù)向C地行駛.當(dāng)乙到達(dá)C地后,乙立即掉頭并提速為原速的倍按原路返回A地,而甲也立即提速為原速的倍繼續(xù)向C地行駛,到達(dá)C地就停止.若甲、乙間的距離y(米)與甲出發(fā)的時(shí)間t(分)之間的函數(shù)關(guān)系如圖所示,則當(dāng)甲到達(dá)C地時(shí),乙距A_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)報(bào)道,“國(guó)際剪刀石頭布協(xié)會(huì)”提議將“剪刀石頭布”作為奧運(yùn)會(huì)比賽項(xiàng)目.某校學(xué)生會(huì)想知道學(xué)生對(duì)這個(gè)提議的了解程度,隨機(jī)抽取部分學(xué)生進(jìn)行了一次問卷調(diào)查,并根據(jù)收集到的信息進(jìn)行了統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題.

1)接受問卷調(diào)查的學(xué)生共有   名,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為   ;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

2)若該校共有學(xué)生1200人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生中對(duì)將“剪刀石頭布”作為奧運(yùn)會(huì)比賽項(xiàng)目的提議達(dá)到“了解””和“基本了解”程度的總?cè)藬?shù);

3)“剪刀石頭布”比賽時(shí)雙方每次任意出“剪刀”、“石頭”、“布”這三種手勢(shì)中的一種,規(guī)則為:剪刀勝布,布勝石頭,石頭勝剪刀,若雙方出現(xiàn)相同手勢(shì),則算打平.若小剛和小明兩人只比賽一局,請(qǐng)用樹狀圖或列表法求兩人打平的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形中,BC=3,動(dòng)點(diǎn)出發(fā),以每秒1個(gè)單位的速度,沿射線方向移動(dòng),作關(guān)于直線的對(duì)稱,設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為

1)若

①如圖2,當(dāng)點(diǎn)B’落在AC上時(shí),顯然PCB’是直角三角形,求此時(shí)t的值

②是否存在異于圖2的時(shí)刻,使得PCB’是直角三角形?若存在,請(qǐng)直接寫出所有符合題意的t的值?若不存在,請(qǐng)說明理由

2)當(dāng)P點(diǎn)不與C點(diǎn)重合時(shí),若直線PB’與直線CD相交于點(diǎn)M,且當(dāng)t3時(shí)存在某一時(shí)刻有結(jié)論∠PAM=45°成立,試探究:對(duì)于t3的任意時(shí)刻,結(jié)論∠PAM=45°是否總是成立?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案