【題目】如圖①所示,將直尺擺放在三角板上,使直尺與三角板的邊分別交于點(diǎn)D,E,F(xiàn),G,已知∠CGD=42°
(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

(1)求∠CEF的度數(shù);
(2)將直尺向下平移,使直尺的邊緣通過(guò)三角板的頂點(diǎn)B,交AC邊于點(diǎn)H,如圖②所示,點(diǎn)H,B在直尺上的讀數(shù)分別為4,13.4,求BC的長(zhǎng)(結(jié)果保留兩位小數(shù)).

【答案】
(1)

【解答】解:∵∠CGD=42°,∠C=90°,

∴∠CDG=90°﹣42°=48°,

∵DG∥EF,

∴∠CEF=∠CDG=48°;


(2)

∵點(diǎn)H,B的讀數(shù)分別為4,13.4,

∴HB=13.4﹣4=9.4(m),

∴BC=HBcos42°≈9.4×0.74≈6.96(m).

答:BC的長(zhǎng)為6.96m.


【解析】(1)先根據(jù)直角三角形的兩銳角互為求出∠CDG的度數(shù),再根據(jù)兩直線平行,同位角相等求出∠DEF,然后根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和即可求出∠EFA;
(2)根據(jù)度數(shù)求出HB的長(zhǎng)度,再根據(jù)∠CBH=∠CGD=42°,利用42°的余弦值進(jìn)求解.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解解直角三角形(解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=x2+bx+c經(jīng)過(guò)A(0,2),B(3,2)兩點(diǎn),若兩動(dòng)點(diǎn)D、E同時(shí)從原點(diǎn)O分別沿著x軸、y軸正方向運(yùn)動(dòng),點(diǎn)E的速度是每秒1個(gè)單位長(zhǎng)度,點(diǎn)D的速度是每秒2個(gè)單位長(zhǎng)度.

(1)求拋物線與x軸的交點(diǎn)坐標(biāo);
(2)若點(diǎn)C為拋物線與x軸的交點(diǎn),是否存在點(diǎn)D,使A、B、C、D四點(diǎn)圍成的四邊形是平行四邊形?若存在,求點(diǎn)D的坐標(biāo);若不存在,說(shuō)明理由;
(3)問(wèn)幾秒鐘時(shí),B、D、E在同一條直線上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知(b、c為常數(shù))的頂點(diǎn)為P,等腰直角三角形ABC的頂點(diǎn)A的坐標(biāo)為(0,﹣1),點(diǎn)C的坐標(biāo)為(4,3),直角頂點(diǎn)B在第四象限.

(1)如圖,若拋物線經(jīng)過(guò)A、B兩點(diǎn),求拋物線的解析式.
(2)平移1中的拋物線,使頂點(diǎn)P在直線AC上并沿AC方向滑動(dòng)距離為時(shí),試證明:平移后的拋物線與直線AC交于x軸上的同一點(diǎn).
(3)在2的情況下,若沿AC方向任意滑動(dòng)時(shí),設(shè)拋物線與直線AC的另一交點(diǎn)為Q,取BC的中點(diǎn)N,試探究NP+BQ是否存在最小值?若存在,求出該最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分別為E,F(xiàn),連接EF,則的△AEF的面積是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AB∥CD,AB≠CD,BD=AC.

(1)求證:AD=BC
(2)若E、F、G、H分別是AB、CD、AC、BD的中點(diǎn),求證:線段EF與線段GH互相垂直平分。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)A(0,4),B(1,0),C(5,0),其對(duì)稱軸與x軸相交于點(diǎn)M.

(1)求拋物線的解析式和對(duì)稱軸;
(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使△PAB的周長(zhǎng)最?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)連接AC,在直線AC的下方的拋物線上,是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩個(gè)同心圓,大圓半徑為5cm,小圓的半徑為3cm,若大圓的弦AB與小圓相交,則弦AB的取值范圍是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,D是邊BC的中點(diǎn),一個(gè)圓過(guò)點(diǎn)A,交邊AB于點(diǎn)E,且與BC相切于點(diǎn)D,則該圓的圓心是( 。

A.線段AE的中垂線與線段AC的中垂線的交點(diǎn)
B.線段AB的中垂線與線段AC的中垂線的交點(diǎn)
C.線段AE的中垂線與線段BC的中垂線的交點(diǎn)
D.線段AB的中垂線與線段BC的中垂線的交點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C是線段AB的中點(diǎn),CD平分,CE平分,CD=CE.

(1)求證:

(2)若,求的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案