【題目】如圖,點(diǎn)P在直線AB上方,且∠APB=90°,PC⊥AB于C,若線段AB=6,AC=x,S△PAB=y,則y與x的函數(shù)關(guān)系圖象大致是( )
A.
B.
C.
D.
【答案】D
【解析】解:∵PC⊥AB于C,∠APB=90°,
∴∠ACP=∠BCP=90°,
∴∠APC+∠BPC=∠APC+∠PAC=90°,
∴∠PAC=∠BPC,
∴△APC∽△PBC,
∴ ,
∵AB=6,AC=x,
∴BC=6﹣x,
∴PC2=x(6﹣x),
∴PC= ,
∴y= ABPC=3 =3 ,
故選D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的圖象(函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對(duì)對(duì)應(yīng)值,他的橫坐標(biāo)x表示自變量的某個(gè)值,縱坐標(biāo)y表示與它對(duì)應(yīng)的函數(shù)值).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰梯形ABCD中,AD∥BC,AD=1,BC=3,AB=CD=2,點(diǎn)E在BC邊上,AE與BD交于點(diǎn)F,∠BAE=∠DBC.
(1)求證:△ABE∽△BCD;
(2)求tan∠DBC的值;
(3)求線段BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從點(diǎn)A看一山坡上的電線桿PQ,觀測(cè)點(diǎn)P的仰角是45°,向前走6m到達(dá)B點(diǎn),測(cè)得頂端點(diǎn)P和桿底端點(diǎn)Q的仰角分別是60°和30°,求該電線桿PQ的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A(a,3),B(b,1)都在雙曲線y= 上,點(diǎn)C,D,分別是x軸,y軸上的動(dòng)點(diǎn),則四邊形ABCD周長(zhǎng)的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與直線y=x+1相交于A(﹣1,0),B(4,m)兩點(diǎn),且拋物線經(jīng)過(guò)點(diǎn)C(5,0).
(1)求拋物線的解析式;
(2)點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、點(diǎn)B重合),過(guò)點(diǎn)P作直線PD⊥x軸于點(diǎn)D,交直線AB于點(diǎn)E.
①當(dāng)PE=2ED時(shí),求P點(diǎn)坐標(biāo);
②是否存在點(diǎn)P使△BEC為等腰三角形?若存在請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017通遼)小蘭和小穎用下面兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)做游戲,每個(gè)轉(zhuǎn)盤(pán)被分成面積相等的幾個(gè)扇形,轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán)各一次,若兩次指針?biāo)笖?shù)字之和小于4,則小蘭勝,否則小穎勝(指針指在分界線時(shí)重轉(zhuǎn)),這個(gè)游戲?qū)﹄p方公平嗎?請(qǐng)用樹(shù)狀圖或列表法說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們規(guī)定:三角形任意兩邊的“極化值”等于第三邊上的中線和這邊一半的平方差.如圖1,在△ABC中,AO是BC邊上的中線,AB與AC的“極化值”就等于AO2﹣BO2的值,可記為AB△AC=AO2﹣BO2 .
(1)在圖1中,若∠BAC=90°,AB=8,AC=6,AO是BC邊上的中線,則AB△AC= , OC△OA=;
(2)如圖2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;
(3)如圖3,在△ABC中,AB=AC,AO是BC邊上的中線,點(diǎn)N在AO上,且ON= AO.已知AB△AC=14,BN△BA=10,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,EF∥AB,DE:EA=2:3,EF=4,則CD的長(zhǎng)為( )
A.
B.8
C.10
D.16
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com