如圖,已知C、D是半圓O的三等分點,圓的半徑為R,求圖中陰影部分的面積.

答案:
解析:

  解:連結OD、OC、CD.

  ∵,

  ∴∠DOA=∠DOC=60°,

  ∵OD=OC,∴△ODC為正三角形,

  ∴∠ODC-60°,

  ∴CD∥AB,

  ∴△ADC和△DOC等高,且同底,∴S△ADC=S△DOC

  ∴πR2

  思路點撥:陰影部分為不規(guī)則圖形,若用和差法求解,可分成弓形和三角形,但三角形面積較難求,因此,用割補法,將三角形ADC的面積轉(zhuǎn)化成△DOC的面積,這樣陰影部分與扇形OCD面積相等.

  評注:當用和差法較難求面積時,常用割補法,將圖形等價轉(zhuǎn)換為另一個較簡單的圖形.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知A,B兩點是直線AB與x軸的正半軸,y軸的正半軸的交點,且OA,OB的長分別是x2-14x+48=0的兩個根(OA>OB),射線BC平分∠ABO交x軸于C點,若有一動點P以每秒1個單位的速度從B點開始沿射線BC移動,運動時間為t秒
(1)設△APB和△OPB的面積分別為S1,S2,求S1:S2;
(2)求直線BC的解析式;
(3)在點P的運動過程中,△OPB可能是等腰三角形嗎?若可能,求出時間t;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(江蘇蘇州卷)數(shù)學(帶解析) 題型:解答題

如圖,已知拋物線(b是實數(shù)且b>2)與x軸的正半軸分別交于點A、B(點A位于點B的左側),與y軸的正半軸交于點C.
【小題1】點B的坐標為 ▲ ,點C的坐標為 ▲ (用含b的代數(shù)式表示);
【小題2】請你探索在第一象限內(nèi)是否存在點P,使得四邊形PCOB的面積等于2b,且△PBC是以點P為直角頂點的等腰直角三角形?如果存在,求出點P的坐標;如果不存在,請說明理由;
【小題3】請你進一步探索在第一象限內(nèi)是否存在點Q,使得△QCO、△QOA和△QAB中的任意兩個三角形均相似(全等可看作相似的特殊情況)?如果存在,求出點Q的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年浙江建德李家鎮(zhèn)初級中學八年級5月單元檢測數(shù)學試卷(帶解析) 題型:解答題

如圖,已知A,B兩點是直線AB與軸的正半軸,軸的正半軸的交點,且OA,OB的長分別是的兩個根(OA>OB),射線BC平分∠ABO交軸于C點,若有一動點P以每秒1個單位的速度從B點開始沿射線BC移動,運動時間為t秒.

(1)設△APB和△OPB的面積分別為S1,S2,求S1∶S2;
(2)求直線BC的解析式;
(3)在點P的運動過程中,△OPB可能是等腰三角形嗎?若可能,直接寫出時間t的值,若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2014屆浙江建德八年級5月單元檢測數(shù)學試卷(解析版) 題型:解答題

如圖,已知A,B兩點是直線AB與軸的正半軸,軸的正半軸的交點,且OA,OB的長分別是的兩個根(OA>OB),射線BC平分∠ABO交軸于C點,若有一動點P以每秒1個單位的速度從B點開始沿射線BC移動,運動時間為t秒.

(1)設△APB和△OPB的面積分別為S1,S2,求S1∶S2;

(2)求直線BC的解析式;

(3)在點P的運動過程中,△OPB可能是等腰三角形嗎?若可能,直接寫出時間t的值,若不可能,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(江蘇蘇州卷)數(shù)學(解析版) 題型:解答題

如圖,已知拋物線(b是實數(shù)且b>2)與x軸的正半軸分別交于點A、B(點A位于點B的左側),與y軸的正半軸交于點C.

1.點B的坐標為  ▲  ,點C的坐標為  ▲  (用含b的代數(shù)式表示);

2.請你探索在第一象限內(nèi)是否存在點P,使得四邊形PCOB的面積等于2b,且△PBC是以點P為直角頂點的等腰直角三角形?如果存在,求出點P的坐標;如果不存在,請說明理由;

3.請你進一步探索在第一象限內(nèi)是否存在點Q,使得△QCO、△QOA和△QAB中的任意兩個三角形均相似(全等可看作相似的特殊情況)?如果存在,求出點Q的坐標;如果不存在,請說明理由.

 

查看答案和解析>>

同步練習冊答案