已知點A(a,-5)與點B(-4,b)關(guān)于y軸對稱,則a+b=   ;
-1.

試題分析:P(x,y)關(guān)于y軸對稱的點的坐標(biāo)P1(-x,y),點A(a,-5)與點B(-4,b)關(guān)于y軸對稱,所以,a=4,b=-5,所以,a+b=-1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

△ABC在直角坐標(biāo)系中的位置如圖所示,直線l經(jīng)過點(-1,0),并且與y軸平行.

(1)將△ABC繞坐標(biāo)原點O順時針旋轉(zhuǎn)90°得到△A1B1C1,在圖中畫出△A1B1C1,并寫出△A1B1C1三個頂點的坐標(biāo);
(2)△A2B2C2與△ABC關(guān)于直線l對稱,畫出△A2B2C2,并寫出△A2B2C2三個頂點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在下面的網(wǎng)格圖中,每個小正方形的邊長均為1個單位,在Rt△ABC中,∠C=90°,AC=3,BC=6.

(1)試作出△ABC以A為旋轉(zhuǎn)中心、沿順時針方向旋轉(zhuǎn)90°后的圖形△AB1C1
(2)若點B的坐標(biāo)為(-5,5),試建立合適的直角坐標(biāo)系,并寫出A、C兩點的坐標(biāo);
(3)作出與△ABC關(guān)于原點對稱的圖形△A2B2C2,并寫出A2、B2、C2三點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一位同學(xué)拿了兩塊45°三角尺△MNK,△ACB做了一個探究活動:將△MNK的直角頂點M放在△ABC的斜邊AB的中點處,設(shè)AC=BC=4.

(1)如圖(1),兩三角尺的重疊部分為△ACM,則重疊部分的面積為       ,
(2)將圖(1)中的△MNK繞頂點M逆時針旋轉(zhuǎn)45°,得到圖(2),此時重疊部分的面積為           
(3)如果將△MNK繞M旋轉(zhuǎn)到不同于圖(1)和圖(2)的圖形,如圖(3),請你求此時重疊部分的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,△ABC三個頂點的坐標(biāo)分別為A(2,2)、B(-1,-2)、C(-1,1).

(1)(畫圖與寫坐標(biāo)各3分)畫出與△ABC關(guān)于y軸對稱的△A1B1C1,A、B、C的對稱點分別為A1、B1、C1,則點A1、B1、C1的坐標(biāo)分別為(    )、(   )、(    ).
(2)(1分)畫出B點關(guān)于C點的對稱點B2(保留作圖痕跡),并求出其坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,將正方形ABCD中的△ABD繞對稱中心O旋轉(zhuǎn)至△GEF的位置,EF交AB于M,GF交BD于N.請猜想AM與GN有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知四邊形ABCD和四邊形CEFG都是正方形 ,且AB>CE.

(1)如圖1,連接BG、DE.求證:BG=DE;
(2)如圖2,如果正方形ABCD的邊長為,將正方形CEFG繞著點C旋轉(zhuǎn)到某一位置時恰好使得CG//BD,BG=BD.
①求的度數(shù);
②請直接寫出正方形CEFG的邊長的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列是我國幾家銀行的標(biāo)志圖象,其中哪一個不是軸對稱圖形?(   )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列標(biāo)志圖中,既是軸對稱圖形,又是中心對稱圖形的是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案