【題目】如圖,雙曲線y=與直線y=x交于A、B兩點(diǎn),點(diǎn)P(a,b)在雙曲線y=上,且0<a<4.
(1)設(shè)PB交x軸于點(diǎn)E,若a=1,求點(diǎn)E的坐標(biāo);
(2)連接PA、PB,得到△ABP,若4a=b,求△ABP的面積.
【答案】(1)點(diǎn)E的坐標(biāo)為(﹣3,0);(2)15.
【解析】
(1)解方程組得A(4,1),B(﹣4,﹣1),再利用反比例函數(shù)解析式確定P(1,4),則可根據(jù)待定系數(shù)法求出直線PB的解析式為y=x+3,從而計(jì)算出函數(shù)值為0對(duì)應(yīng)的函數(shù)值得到點(diǎn)E的坐標(biāo);
(2)利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征得到ab=4,加上b=4a,則可求出a、b得到P(1,4),連接OP,如圖,由(1)得此時(shí)E點(diǎn)坐標(biāo)為(﹣3,0),接著利用三角形面積公式計(jì)算出S△POB=,由于點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱,所以OA=OB,所以S△BAP=2S△OBP.
解:(1)解方程組
得或,
∴A(4,1),B(﹣4,﹣1),
當(dāng)x=1時(shí),y==4,則P(1,4),
設(shè)直線PB的解析式為y=mx+n,
把P(1,4),B(﹣4,﹣1)代入得,
解得,
∴直線PB的解析式為y=x+3,
當(dāng)y=0時(shí),x+3=0,解得x=﹣3,
∴點(diǎn)E的坐標(biāo)為(﹣3,0);
(2)∵點(diǎn)P(a,b)在雙曲線y=上,
∴ab=4,
而b=4a,
∴a4a=4,解得a=±1,
∵0<a<4.
∴a=1,
∴P(1,4),
連接OP,如圖,由(1)得此時(shí)E點(diǎn)坐標(biāo)為(﹣3,0),
S△POB=S△OBE+S△OEP=×3×1+×3×4=,
∵點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱,
∴OA=OB,
∴S△OAP=S△OBP=,
∴S△BAP=2S△OBP=15.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校初二學(xué)生每周上網(wǎng)的時(shí)間,兩位學(xué)生進(jìn)行了抽樣調(diào)查.小麗調(diào)查了初二電腦愛(ài)好者中40名學(xué)生每周上網(wǎng)的時(shí)間;小杰從全校400名初二學(xué)生中隨機(jī)抽取了40名學(xué)生,調(diào)查了每周上網(wǎng)的時(shí)間.小麗與小杰整理各自樣本數(shù)據(jù),如下表所示:
時(shí)間段 (小時(shí)/周) | 小麗抽樣 人數(shù) | 小杰抽樣 人數(shù) |
0~1 | 6 | 22 |
1~2 | 10 | 10 |
2~3 | 16 | 6 |
3~4 | 8 | 2 |
(每組可含最低值,不含最高值)
(1)你認(rèn)為哪位同學(xué)抽取的樣本不合理?請(qǐng)說(shuō)明理由;
(2)根據(jù)合理抽取的樣本,把上圖中的頻數(shù)分布直方圖補(bǔ)畫完整;
(3)專家建議每周上網(wǎng)2小時(shí)以上(含2小時(shí))的同學(xué)應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間,估計(jì)該校全體初二學(xué)生中有多少名同學(xué)應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)(a≠0)的圖象的頂點(diǎn)在第一象限,且過(guò)點(diǎn)(0,1)和(﹣1,0).下列結(jié)論:①ab<0,②>4a,③0<b<1,④當(dāng)x>﹣1時(shí),y>0,其中正確結(jié)論的個(gè)數(shù)是( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx﹣3的圖象經(jīng)過(guò)點(diǎn)(1,﹣4)和(﹣1,0).
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)x在什么范圍內(nèi),y隨x增大而減?該函數(shù)有最大值還是有最小值?求出這個(gè)最值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BCA=90°,D為AC邊上一動(dòng)點(diǎn),O為BD中點(diǎn),DE⊥AB,垂足為E,連結(jié)OE,CO,延長(zhǎng)CO交AB于F,設(shè)∠BAC=α,則( )
A.∠EOF=αB.∠EOF=2α
C.∠EOF=180°﹣αD.∠EOF=180°﹣2α
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E是AD邊中點(diǎn),BD、CE交于點(diǎn)H,BE、AH交于點(diǎn)G,則下列結(jié)論:
①AG⊥BE;②BG=4GE;③S△BHE=S△CHD;④∠AHB=∠EHD.
其中正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了落實(shí)黨中央提出的“惠民政策”,我市今年計(jì)劃開(kāi)發(fā)建設(shè)A、B兩種戶型的“廉租房”共40套.投入資金不超過(guò)200萬(wàn)元,又不低于198萬(wàn)元.開(kāi)發(fā)建設(shè)辦公室預(yù)算:一套A型“廉租房”的造價(jià)為5.2萬(wàn)元,一套B型“廉租房”的造價(jià)為4.8萬(wàn)元.
(1)請(qǐng)問(wèn)有幾種開(kāi)發(fā)建設(shè)方案?
(2)哪種建設(shè)方案投入資金最少?最少資金是多少萬(wàn)元?
(3)在(2)的方案下,為了讓更多的人享受到“惠民”政策,開(kāi)發(fā)建設(shè)辦公室決定通過(guò)縮小“廉租房”的面積來(lái)降低造價(jià)、節(jié)省資金.每套A戶型“廉租房”的造價(jià)降低0.7萬(wàn)元,每套B戶型“廉租房”的造價(jià)降低0.3萬(wàn)元,將節(jié)省下來(lái)的資金全部用于再次開(kāi)發(fā)建設(shè)縮小面積后的“廉租房”,如果同時(shí)建設(shè)A、B兩種戶型,請(qǐng)你直接寫出再次開(kāi)發(fā)建設(shè)的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,直線與軸交于點(diǎn),與軸交于點(diǎn);拋物線過(guò),兩點(diǎn),與軸交于另一點(diǎn),拋物線的頂點(diǎn)為.
(1)求拋物線的解析式;
(2)在直線上方的拋物線上有一動(dòng)點(diǎn),求出點(diǎn)到直線的距離的最大值;
(3)如圖②,直線與拋物線的對(duì)稱軸相交于點(diǎn),請(qǐng)直接寫出的平分線與軸的交點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形AEHC是由三個(gè)全等矩形拼成的,AH與BE、BF、DF、DG、CG分別交于點(diǎn)P、Q、K、M、N,設(shè)△BPQ、△DKM、△CNH的面積依次為、、.
(1)求證:△BPQ∽△DKM∽△CNH;
(2)若,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com