【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,BAD的平分線交BCE,交DC的延長線于F,BGAEG,BG=,則EFC的周長為_____________.

【答案】8

【解析】試題解析:∵在ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分線交BC于點(diǎn)E,

∴∠BAF=∠DAF,

∵AB∥DF,

∴∠BAF=∠F,

∴∠F=∠DAF,

∴△ADF是等腰三角形,AD=DF=9;

∵AD∥BC,

∴△EFC是等腰三角形,且FC=CE.

∴EC=FC=9-6=3,

∴AB=BE.

∴在△ABG中,BG⊥AE,AB=6,BG=4

可得:AG=2,

又∵BG⊥AE,

∴AE=2AG=4,

∴△ABE的周長等于16,

又∵ABCD,

∴△CEF∽△BEA,相似比為1:2,

∴△CEF的周長為8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大石橋市政府為了落實(shí)暖冬惠民工程,計劃對城區(qū)內(nèi)某小區(qū)的部分老舊房屋及供暖管道和部分路段的人行地磚、綠化帶等公共設(shè)施進(jìn)行全面更新改造。該工程乙隊單獨(dú)完成所需天數(shù)是甲隊單獨(dú)完成所需天數(shù)的1.5 , 若甲隊先做10天,剩下兩隊合作30天完成。

(1)甲乙兩個隊單獨(dú)完成此項工程各需多少天?

(2)已知甲隊每天的施工費(fèi)用為8.4萬元,乙對每天的施工費(fèi)用為5.6萬元,工程施工的預(yù)算費(fèi)用為500萬元,為了縮短工期并高效完成工程,擬預(yù)算的費(fèi)用是否夠用?若不夠用,需追加預(yù)算多少萬元?請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,、.

1)請畫出關(guān)于軸對稱的(其中、分別是、、的對應(yīng)點(diǎn))并直接寫出點(diǎn)的坐標(biāo)為 .

2)若直線經(jīng)過點(diǎn)且與軸平行,則點(diǎn)關(guān)于直線的對稱點(diǎn)的坐標(biāo)為 .

3)在軸上存在一點(diǎn),使最大,則點(diǎn)的坐標(biāo)為 .

4)第一象限有一點(diǎn),在軸上找一點(diǎn)使最短,畫出最短路徑,保留作圖跡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)的直線與直線相交于點(diǎn)

1)直線的關(guān)系式為 ;直線的關(guān)系式為 (直接寫出答案,不必寫過程).

2)求的面積.

3)若有一動點(diǎn)沿路線運(yùn)動,當(dāng)時,求點(diǎn) 坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分)如圖所示,在四邊形ABCD中,AB=2BC=2,CD=1,AD=5,且∠C=90°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABD是O的內(nèi)接三角形,E是弦BD的中點(diǎn),點(diǎn)C是O外一點(diǎn)且∠DBC=∠A,連接OE延長與圓相交于點(diǎn)F,與BC相交于點(diǎn)C.

(1)求證:BC是O的切線;

(2)若O的半徑為6,BC=8,求弦BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在平面直角坐標(biāo)系中A(3,2)B(4,3),C(1,1)

(1)在圖中作出ABC關(guān)于y軸對稱圖形A1B1C1

(2)寫出A1、B1、C1的坐標(biāo)分別是A1(______),B1(___,___),C1(___,___);

3)△ABC的面積是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC是等邊三角形,點(diǎn)D、E分別在AC、BC上,且CD=BE,

(1)求證:ABE≌△BCD;

(2)求出AFB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx(a≠0)過點(diǎn)E(10,0),矩形ABCD的邊AB在線段OE上(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)C,D在拋物線上.設(shè)A(t,0),當(dāng)t=2時,AD=4.

(1)求拋物線的函數(shù)表達(dá)式.

(2)當(dāng)t為何值時,矩形ABCD的周長有最大值?最大值是多少?

(3)保持t=2時的矩形ABCD不動,向右平移拋物線.當(dāng)平移后的拋物線與矩形的邊有兩個交點(diǎn)G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.

查看答案和解析>>

同步練習(xí)冊答案