【題目】如圖,已知∠ABC=63°,∠ECB=117°.
(1) AB與ED平行嗎?為什么?
(2)若∠P=∠Q,則∠1與∠2是否相等?說說你的理由.
【答案】(1)AB∥ED
(2)∠1=∠2
【解析】
試題(1)求出∠ABC+∠BCE=180°,根據(jù)平行線的判定推出即可;
(2)根據(jù)三角形內(nèi)角和定理求出∠PBO=∠QCO,根據(jù)平行線的性質(zhì)得出∠1+∠PBO=∠2+∠QCO,即可求出答案.
試題解析:(1)AB∥ED,
理由是:∵∠ABC=63°,∠ECB=117°,
∴∠ABC+∠BCE=180°,
∴AB∥ED;
(2)理由是:∵∠P=∠Q,∠POB=∠COQ,∠P+∠PBO+∠POB=180°,∠Q+∠QOC+∠QCO=180°,
∴∠PBO=∠QCO,
∵AB∥DE,
∴∠1+∠PBO=∠2+∠QCO,
∴∠1=∠2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)4(3x5)2=(x4)2;
(2)y22y8=0;
(3)x(x3)=4(x1) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC的平分線交AC于點(diǎn)D,點(diǎn)O是AB上一點(diǎn),⊙O過B、D兩點(diǎn),且分別交AB,BC于點(diǎn)E,F(xiàn).
(1)求證:AC是⊙O的切線;
(2)已知AB=5,AC=4,求⊙O的半徑r.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小麗的家和學(xué)校在一條筆直的馬路旁,某天小麗沿著這條馬路去上學(xué),她先從家步行到公交站臺(tái)甲,再乘車到公交站臺(tái)乙下車,最后步行到學(xué)校(在整個(gè)過程中小麗步行的速度不變),圖中的折線ABCDE表示小麗和學(xué)校之間的距離y(米)與她離家的時(shí)間x(分)之間的函數(shù)關(guān)系.
(1)求小麗步行的速度及學(xué)校與公交站臺(tái)乙之間的距離;
(2)當(dāng)8≤x≤15時(shí),求y與x之間的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的位置如圖所示.現(xiàn)將△ABC平移,使得點(diǎn)A移至圖中的點(diǎn)A'的位置.
(1)平移后所得△ABC的頂點(diǎn)B的坐標(biāo)為 ,C的坐標(biāo)為 ;
(2)平移過程中△ABC掃過的面積為 ;
(3)將直線AB以每秒1個(gè)單位長(zhǎng)度的速度向右平移,則平移 秒時(shí)該直線恰好經(jīng)過點(diǎn)C.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)一種產(chǎn)品,當(dāng)生產(chǎn)數(shù)量至少為10噸,但不超過50噸時(shí),每噸的成本y(萬元/噸)與生產(chǎn)數(shù)量x(噸)的函數(shù)關(guān)系的圖象如圖所示.
(1)求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;
(2)當(dāng)生產(chǎn)這種產(chǎn)品每噸的成本為7萬元時(shí),求該產(chǎn)品的生產(chǎn)數(shù)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,拋物線 (m>0)與x軸交于A,B兩點(diǎn).若A,B兩點(diǎn)到原點(diǎn)的距離分別為OA,OB,且滿足 ,則m的值等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標(biāo)系中,點(diǎn)A(4,0),點(diǎn)B(m, m),點(diǎn)C為線段OA上一點(diǎn)(點(diǎn)O為原點(diǎn)),則AB+BC的最小值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com