【題目】如圖,四邊形ABCD為菱形,以AD為直徑作⊙O交AB于點F,連接DB交⊙O于點H,E是BC上的一點,且BE=BF,連接DE.
(1)求證:△DAF≌△DCE.
(2)求證:DE是⊙O的切線.
(3)若BF=2,DH=,求四邊形ABCD的面積.
【答案】(1)證明見解析;(2)證明見解析;(3)20.
【解析】
(1)連接DF,結(jié)合菱形的性質(zhì)利用SAS可證△DAF≌△DCE;
(2)由直徑所對的圓周角是直角可知∠DFA=90°,由全等的性質(zhì)與平行的性質(zhì)可得∠ADE=90°,根據(jù)切線的判定定理可得結(jié)論;
(3)連接AH,由等腰三角形三線合一的性質(zhì)可得DB=2DH,根據(jù)勾股定理可得AD、AF、DF長,易得四邊形ABCD的面積.
(1)證明:如圖,連接DF,
∵四邊形ABCD為菱形,
∴AB=BC=CD=DA,AD∥BC,∠DAB=∠C,
∵BF=BE,
∴AB﹣BF=BC﹣BE,
即AF=CE,
∴△DAF≌△DCE(SAS);
(2)由(1)知,△DAF≌△DCE,則∠DFA=∠DEC.
∵AD是⊙O的直徑,
∴∠DFA=90°,∴∠DEC=90°
∵AD∥BC,
∴∠ADE=∠DEC=90°,
∴OD⊥DE,
∵OD是⊙O的半徑,
∴DE是⊙O的切線;
(3)解:如圖,連接AH,
∵AD是⊙O的直徑,
∴∠AHD=∠DFA=90°,
∴∠DFB=90°,
∵AD=AB,DH=,
∴DB=2DH=2,
在Rt△ADF和Rt△BDF中,
∵DF2=AD2﹣AF2,DF2=BD2﹣BF2,
∴AD2﹣AF2=DB2﹣BF2,
∴AD2﹣(AD﹣BF)2=DB2﹣BF2,
∴AD2﹣(AD﹣2)2=(2)2﹣22,
∴AD=5.
∴AH===2,
∴S四邊形ABCD=2S△ABD=2×AH=BDAH=2×2=20.即四邊形ABCD的面積是20,
故答案為:20.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD中,點P是CD的中點,∠BCD=60°,射線AP交BC的延長線于點E,射線BP交DE于點K,點O是線段BK的中點,作BM⊥AE于點M,作KN⊥AE于點N,連結(jié)MO、NO,以下四個結(jié)論:①△OMN是等腰三角形;②tan∠OMN=;③BP=4PK;④PMPA=3PD2,其中正確的是( 。
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】太陽能光伏發(fā)電因其清潔、安全、便利、高效等特點,已成為世界各國普遍關注和重點發(fā)展的新興產(chǎn)業(yè),如圖是太陽能電池板支撐架的截面圖,其中的粗線表示支撐角鋼,太陽能電池板與支撐角鋼AB的長度相同,均為300cm,AB的傾斜角為,BE=CA=50cm,支撐角鋼CD,EF與底座地基臺面接觸點分別為D,F(xiàn),CD垂直于地面,于點E.兩個底座地基高度相同(即點D,F(xiàn)到地面的垂直距離相同),均為30cm,點A到地面的垂直距離為50cm,求支撐角鋼CD和EF的長度各是多少cm(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,我們把以拋物線上的動點A為頂點的拋物線叫做這條拋物線的“子拋物線”.如圖,已知某條“子拋物線”的二次項系數(shù)為,且與y軸交于點C.設點A的橫坐標為m(m>0),過點A作y軸的垂線交y軸于點B.
(1)當m=1時,求這條“子拋物線”的解析式;
(2)用含m的代數(shù)式表示∠ACB的余切值;
(3)如果∠OAC=135°,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC三個頂點都在格點上,點A,B,C的坐標分別為A(﹣2,3),B(﹣3,1),C(0,1)請解答下列問題:
(1)△ABC與△A1B1C1關于原點O成中心對稱,畫出△A1B1C1并直接寫出點A的對應點A1的坐標;
(2)畫出△ABC繞點C順時針旋轉(zhuǎn)90°后得到的△A2B2C,并求出線段AC旋轉(zhuǎn)時掃過的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)(問題發(fā)現(xiàn))如圖1,和均為等邊三角形,點,,在同一條直線上.填空:①線段,之間的數(shù)量關系為______;②_____°.
(2)(類比探究)如圖2,和均為等腰直角三角形,,,,點,,在同一條直線上,請判斷線段,之間的數(shù)量關系及的度數(shù),并給出證明.
(3)(解決問題)如圖3,在中,,,,點在邊上,于點,,將繞點旋轉(zhuǎn),當所在直線經(jīng)過點時,的長是多少?(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某企業(yè)設計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.
求出每天的銷售利潤元與銷售單價元之間的函數(shù)關系式;
求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?
如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應控制在什么范圍內(nèi)?每天的總成本每件的成本每天的銷售量
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,一次函數(shù)y=2x+b的圖象與x軸的交點為A(2,0),與y軸的交點為B,直線AB與反比例函數(shù)y=的圖象交于點C(﹣1,m).
(1)求一次函數(shù)和反比例函數(shù)的表達式;
(2)直接寫出關于x的不等式2x+b>的解集;
(3)點P是這個反比例函數(shù)圖象上的點,過點P作PM⊥x軸,垂足為點M,連接OP,BM,當S△ABM=2S△OMP時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近年來網(wǎng)約車十分流行,初三某班學生對“美團”和“滴滴”兩家網(wǎng)約車公司各10名司機月收入進行了一項抽樣調(diào)查,司機月收入(單位:千元)如圖所示:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均月收/千元 | 中位數(shù)/千元 | 眾數(shù)/千元 | 方差/千元 | |
“美團” | ① | 6 | 6 | 1.2 |
“滴滴” | 6 | ② | 4 | ③ |
(1)完成表格填空:①__________②__________③__________
(2)若從兩家公司中選擇一家做網(wǎng)約車司機,你會選哪家公司,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com