已知AP是半圓O的直徑,點(diǎn)C是半圓O上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、P重合),聯(lián)結(jié)AC,以直線AC為對(duì)稱軸翻折AO,將點(diǎn)O的對(duì)稱點(diǎn)記為O1,射線AO1交半圓O于點(diǎn)B,聯(lián)結(jié)OC.

(1)如圖1,求證:AB∥OC;
(2)如圖2,當(dāng)點(diǎn)B與點(diǎn)O1重合時(shí),求證:;
(3)過(guò)點(diǎn)C作射線AO1的垂線,垂足為E,聯(lián)結(jié)OE交AC于F.當(dāng)AO=5,O1B=1時(shí),求的值.
【答案】分析:(1)利用對(duì)稱性得出∠OAC=∠O1AC,再利用等邊對(duì)等角得出∠OAC=∠C,即可得出∠C=∠O1AC,求出AB∥OC即可;
(2)由點(diǎn)O1與點(diǎn)O關(guān)于直線AC對(duì)稱,AC⊥OO1,由點(diǎn)O1與點(diǎn)B重合,可得AC⊥OB,再利用垂徑定理推論得出AB=CB;
(3)分別根據(jù)當(dāng)點(diǎn)O1在線段AB上以及當(dāng)點(diǎn)O1在線段AB的延長(zhǎng)線上時(shí)分別求出AE的長(zhǎng)即可得出答案.
解答:解:(1)∵點(diǎn)O1與點(diǎn)O關(guān)于直線AC對(duì)稱,
∴∠OAC=∠O1AC.
在⊙O中,
∵OA=OC,
∴∠OAC=∠C.
∴∠C=∠O1AC,
∴O1A∥OC,
即AB∥OC;

(2)方法一:如圖2,連結(jié)OB.
∵點(diǎn)O1與點(diǎn)O關(guān)于直線AC對(duì)稱,AC⊥OO1
由點(diǎn)O1與點(diǎn)B重合,可得AC⊥OB.
∵點(diǎn)O是圓心,AC⊥OB,
∴AB=CB,

方法2:∵點(diǎn)O1與點(diǎn)O關(guān)于直線AC對(duì)稱,
∴AO=AO1,CO=CO1,
由點(diǎn)O1與點(diǎn)B重合,可得 AO=AB,CB=CO,
∵OA=OC,
∴AB=CB.
∴AB=CB,

(3)當(dāng)點(diǎn)O1在線段AB上(如圖3),過(guò)點(diǎn)O作OH⊥AB,垂足為H.
∵OH⊥AB,CE⊥AB,
∴OH∥CE,
又∵AB∥OC,
∴HE=OC=5.
∵AB=AO1+O1B=AO+O1B=6,
又∵OH⊥AB,
∴AH=AB=3.
∴AE=EH+AH=5+3=8,
∵AB∥OC,
==,
當(dāng)點(diǎn)O1在線段AB的延長(zhǎng)線上,如圖4,
過(guò)點(diǎn)O作OH⊥AB,垂足為H.
∵OH⊥AB,CE⊥AB,
∴OH∥CE,
又∵AB∥OC,
∴HE=OC=5.
∵AB=AO1-O1B=AO-O1B=4,
又∵OH⊥AB,
∴AH=AB=2.
∴AE=EH+AH=5+2=7,
∵AB∥OC,
==
點(diǎn)評(píng):此題主要考查了圓的綜合應(yīng)用以及垂徑定理和關(guān)于直線對(duì)稱的性質(zhì)等知識(shí),利用數(shù)形結(jié)合以及分類討論的思想得出是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB是半圓O的直徑,AP為過(guò)點(diǎn)A的半圓的切線.在
AB
上任取一點(diǎn)C(點(diǎn)C與A、B不重合),過(guò)點(diǎn)C作半圓的切線CD交AP于點(diǎn)D;過(guò)點(diǎn)C作CE⊥AB,垂足為E.連接BD,交CE于點(diǎn)F.
(1)當(dāng)點(diǎn)C為
AB
的中點(diǎn)時(shí)(如圖1),求證:CF=EF;
(2)當(dāng)點(diǎn)C不是
AB
的中點(diǎn)時(shí)(如圖2),試判斷CF與EF的精英家教網(wǎng)相等關(guān)系是否保持不變,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知AB是半圓O的直徑,AP為過(guò)點(diǎn)A的半圓的切線,在
AB
上任取一點(diǎn)C(點(diǎn)C與A,B不重合),過(guò)精英家教網(wǎng)點(diǎn)C作CD⊥AB于D,E是CD的中點(diǎn),連接BE并延長(zhǎng)交AP于點(diǎn)F,連接CF.
(1)當(dāng)點(diǎn)C是
AB
的中點(diǎn)時(shí)(如圖1),求證:直線CF是半圓O的切線;
(2)當(dāng)點(diǎn)C不是
AB
的中點(diǎn)時(shí)(如圖2),試猜想直線CF與半圓O的位置關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•嘉定區(qū)二模)已知AP是半圓O的直徑,點(diǎn)C是半圓O上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、P重合),聯(lián)結(jié)AC,以直線AC為對(duì)稱軸翻折AO,將點(diǎn)O的對(duì)稱點(diǎn)記為O1,射線AO1交半圓O于點(diǎn)B,聯(lián)結(jié)OC.

(1)如圖1,求證:AB∥OC;
(2)如圖2,當(dāng)點(diǎn)B與點(diǎn)O1重合時(shí),求證:
AB
=
CB

(3)過(guò)點(diǎn)C作射線AO1的垂線,垂足為E,聯(lián)結(jié)OE交AC于F.當(dāng)AO=5,O1B=1時(shí),求
CF
AF
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•葫蘆島一模)如圖,已知AB是半圓O的直徑,AB=10,點(diǎn)P是半圓周上一點(diǎn),連接AP、BP,并延長(zhǎng)BP至點(diǎn)C,使CP=BP,過(guò)點(diǎn)C作CE⊥AB,點(diǎn)E為垂足,CE交AP于點(diǎn)F,連接OF.
(1)當(dāng)∠BAP=30°時(shí),求
BP
的長(zhǎng)度;
(2)當(dāng)CE=8時(shí),求線段EF的長(zhǎng);
(3)在點(diǎn)P運(yùn)動(dòng)過(guò)程中,點(diǎn)E隨之運(yùn)動(dòng)到點(diǎn)A、O之間時(shí),以點(diǎn)E、O、F為頂點(diǎn)的三角形與△BAP相似,請(qǐng)求出此時(shí)AE的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案