【題目】某制藥廠(chǎng)需要緊急生產(chǎn)一批能有效緩解新冠肺炎的藥品,要求必須在12天(含12天)內(nèi)完成.為了加快生產(chǎn),車(chē)間采取工人加班,機(jī)器不停的生產(chǎn)方式,這樣每天藥品的產(chǎn)量(噸)是時(shí)間(天)的一次函數(shù),且滿(mǎn)足如下表中所對(duì)應(yīng)的數(shù)量關(guān)系.由于機(jī)器負(fù)荷運(yùn)轉(zhuǎn)產(chǎn)生損耗,平均生產(chǎn)每噸藥品的成本(元)與時(shí)間(天)的關(guān)系滿(mǎn)足如圖所示的函數(shù)圖象.

時(shí)間(天)

2

4

每天產(chǎn)量(噸)

24

28

1)求藥品每天的產(chǎn)量(噸)與時(shí)間(天)之間的函數(shù)關(guān)系式;

2)當(dāng)時(shí),直接寫(xiě)出(元)與時(shí)間(天)的函數(shù)關(guān)系是 ;

3)若這批藥品的價(jià)格為1400/噸,每天的利潤(rùn)設(shè)為元,求哪一天的利潤(rùn)最高,最高利潤(rùn)是多少?(利潤(rùn)售價(jià)成本)

【答案】1y2x20;(240x200);(3)第10天利潤(rùn)最高,最高利潤(rùn)是32000元.

【解析】

1)設(shè)ykxb,根據(jù)表格中的數(shù)據(jù)將值代入即可求算函數(shù)關(guān)系式;

2)根據(jù)函數(shù)圖象知,當(dāng),(元)與時(shí)間(天)之間滿(mǎn)足一次函數(shù)關(guān)系,設(shè),將(5,400)(12,680)代入求解函數(shù)關(guān)系式即可;

3)根據(jù)函數(shù)圖象分為分別表示出利潤(rùn)并求出最大利潤(rùn)再進(jìn)行比較即可.

1)設(shè)ykxb,則,解得,

y2x20

2)根據(jù)函數(shù)圖象知,當(dāng),(元)與時(shí)間(天)之間滿(mǎn)足一次函數(shù)關(guān)系:設(shè),將(5,400)(12,680)代入:

解得:

P=40x200

3)當(dāng)時(shí),平均生產(chǎn)每噸藥品的成本是P400元,

此時(shí)利潤(rùn):

W1=(1400400y10002x20)=2000x20000,

2000>0

W1x增大而增大,

x5時(shí),W1最大值=2000×52000030000元.

當(dāng)時(shí),平均生產(chǎn)每噸藥品的成本是P40x200

此時(shí)利潤(rùn):

W2=(1400Py

=(140040x200)(2x20

=-80x21600x24000

=-80x10232000,

x10時(shí),W2的最大值=32000

32000>30000,

∴第10天利潤(rùn)最高,最高利潤(rùn)是32000元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系第一象限內(nèi),直線(xiàn)與直線(xiàn)的內(nèi)部作等腰,使,邊軸,軸,在直線(xiàn)上,點(diǎn)C在直線(xiàn)上,CB的延長(zhǎng)線(xiàn)交直線(xiàn)于點(diǎn),作等腰,使軸,軸,點(diǎn)在直線(xiàn)上,按此規(guī)律,則等腰的腰長(zhǎng)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AE平分∠BACBC于點(diǎn)EDAB邊上一動(dòng)點(diǎn),連接CDAE于點(diǎn)P,連接BP.已知AB =6cm,設(shè)B,D兩點(diǎn)間的距離為xcmB,P兩點(diǎn)間的距離為y1cmA,P兩點(diǎn)間的距離為y2cm

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.

下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整:

1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫(huà)圖、測(cè)量,分別得到了y1x的幾組對(duì)應(yīng)值:

x/cm

0

1

2

3

4

5

6

y1/cm

2.49

2.64

2.88

3.25

3.80

4.65

6.00

y2/cm

4.59

4.24

3.80

3.25

2.51

0.00

2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn)(xy1),(x),并畫(huà)出函數(shù)y1的圖象;

3)結(jié)合函數(shù)圖象,回答下列問(wèn)題:

①當(dāng)AP=2BD時(shí),AP的長(zhǎng)度約為 cm

②當(dāng)BP平分∠ABC時(shí),BD的長(zhǎng)度約為 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,AB=2,AD=4,對(duì)角線(xiàn)ACBD相交于點(diǎn)O,且EF,GH分別是AO,BOCO,DO的中點(diǎn),則下列說(shuō)法正確的是(

A.EH=HGB.四邊形EFGH是平行四邊形

C.ACBDD.的面積是的面積的2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,垂足分別為,的中點(diǎn),于點(diǎn).下列結(jié)論:①;②垂直平分;③;④;⑤.其中正確的是( )

A.①②③B.①③⑤C.①②④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某教研機(jī)構(gòu)為了了解初中生課外閱讀名著的現(xiàn)狀,隨機(jī)抽取了某校50名初中生進(jìn)行調(diào)查,依據(jù)相關(guān)數(shù)據(jù)繪制成了以下不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:

類(lèi)別

重視

一般

不重視

人數(shù)

a

15

b

1)求表格中a,b的值;

2)請(qǐng)補(bǔ)全統(tǒng)計(jì)圖;

3)若某校共有初中生2000名,請(qǐng)估計(jì)該校重視課外閱讀名著的初中生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】工匠制作某種金屬工具要進(jìn)行材料煅燒和鍛造兩個(gè)工序,即需要將材料燒到800℃,然后停止煅燒進(jìn)行鍛造操作,經(jīng)過(guò)時(shí),材料溫度降為600℃.如圖,煅燒時(shí)溫度與時(shí)間成一次函敷關(guān)系:鍛造時(shí),溫度與時(shí)間成反比例函數(shù)關(guān)系。已知該材料初始溫度是32℃.

1)分別求出材料煅燒和鍛造時(shí)的函數(shù)關(guān)系式,并且寫(xiě)出自變量的取值范圍;

2)根據(jù)工藝要求,當(dāng)材料溫度低于400℃時(shí),須停止操作.那么鍛造的操作時(shí)間最多有多長(zhǎng)?.

3)如果加工每個(gè)零件需要鍛造12分鐘,并且當(dāng)材料溫度低于400℃時(shí),需要重新煅燒.通過(guò)計(jì)算說(shuō)明加工第一個(gè)零件,一共需要多少分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°AD平分∠BACBC于點(diǎn)D,OAB上一點(diǎn),經(jīng)過(guò)點(diǎn)A、D⊙O分別交邊AB、AC于點(diǎn)E、F

1)求證:BC⊙O的切線(xiàn);

2)若BE=16,sinB=,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為推進(jìn)生態(tài)文明建設(shè),甲、乙兩工程隊(duì)同時(shí)為嶗山區(qū)的兩條綠化帶鋪設(shè)草坪.兩隊(duì)所鋪設(shè)草坪的面積(米)與施工時(shí)間(時(shí))之間關(guān)系的近似可以用此圖象描述.請(qǐng)結(jié)合圖象解答下列問(wèn)題:

(1)從工作2小時(shí)開(kāi)始,施工方從乙隊(duì)抽調(diào)兩人對(duì)草坪進(jìn)行灌溉,乙隊(duì)速度有所降低,求乙隊(duì)在工作2小時(shí)后的函數(shù)關(guān)系式;

(2)求乙隊(duì)降速后,何時(shí)鋪設(shè)草坪面積為甲隊(duì)的

(3)乙隊(duì)降速后,甲乙兩隊(duì)鋪設(shè)草坪速度之比為

查看答案和解析>>

同步練習(xí)冊(cè)答案