【題目】在草莓上市的旺季,小穎和媽媽周末計(jì)劃去草莓園采摘草莓.甲、乙兩家草莓園生產(chǎn)的草莓品質(zhì)相同,每千克售價(jià)均為.甲草莓園的優(yōu)惠方案是:游客進(jìn)園需購(gòu)買(mǎi)每人元的門(mén)票,采摘的草莓按六折收費(fèi);乙草莓園的優(yōu)惠方案是:游客進(jìn)園不需購(gòu)買(mǎi)門(mén)票,采摘的草莓超過(guò)千克后,超過(guò)部分按五折收費(fèi).請(qǐng)你回答下列問(wèn)題:

1)如果去乙草莓園采摘千克草莓,需支付多少元?

2)如果個(gè)人去甲草莓園采摘千克草莓,需支付多少元?

3)小穎和媽媽準(zhǔn)備采摘千克草莓送給朋友,哪家會(huì)更便宜?請(qǐng)說(shuō)明理由.

【答案】1元;(2;(3)乙 ,

【解析】

1)根據(jù)題意利用有理數(shù)的混合運(yùn)算即可解答;

2)根據(jù)游客進(jìn)園需購(gòu)買(mǎi)每人元的門(mén)票,采摘的草莓按六折收費(fèi),;列出代數(shù)式即可;

3)把15千克分別代入甲乙進(jìn)行計(jì)算即可;

130×3=90元;

2個(gè)人去甲草莓園采摘千克草莓,

可得:30m+(30×0.6)x=;

3)根據(jù)小穎和媽媽準(zhǔn)備采摘千克草莓送給朋友,

甲:30×2+18×15=330元,

乙:5×30+10×30×0.5=300元,

故選乙便宜30.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果兩個(gè)角的差的絕對(duì)值等于,就稱(chēng)這兩個(gè)角互為反余角,其中一個(gè)角叫做另一個(gè)角的反余角,例如,,,,則互為反余角,其中的反余角,也是的反余角.

如圖為直線(xiàn)AB上一點(diǎn),于點(diǎn)O,于點(diǎn)O,則的反余角是______,的反余角是______

若一個(gè)角的反余角等于它的補(bǔ)角的,求這個(gè)角.

如圖2,O為直線(xiàn)AB上一點(diǎn),,將繞著點(diǎn)O以每秒角的速度逆時(shí)針旋轉(zhuǎn)得,同時(shí)射線(xiàn)OP從射線(xiàn)OA的位置出發(fā)繞點(diǎn)O以每秒角的速度逆時(shí)針旋轉(zhuǎn),當(dāng)射線(xiàn)OP與射線(xiàn)OB重合時(shí)旋轉(zhuǎn)同時(shí)停止,若設(shè)旋轉(zhuǎn)時(shí)間為t秒,求當(dāng)t為何值時(shí),互為反余角圖中所指的角均為小于平角的角

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,邊AB、AC的垂直平分線(xiàn)分別交BCE、F,若∠EAF90°,AF3,AE4

1)求邊BC的長(zhǎng);(2)求出∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)在下列橫線(xiàn)上用含有a,b的代數(shù)式表示相應(yīng)圖形的面積.

      ;       

2)通過(guò)拼圖,你發(fā)現(xiàn)前三個(gè)圖形的面積與第四個(gè)圖形面積之間有什么關(guān)系?請(qǐng)用數(shù)學(xué)式子表示   ;

3)利用(2)的結(jié)論計(jì)算992+2×99×1+1的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ADABC的中線(xiàn),BE為三角形ABD中線(xiàn),

1)若∠ABE20°,∠BAD45°,求∠BED的度數(shù);

2)畫(huà)出BEDBD邊上的高;

3)若ABC的面積為80,BD8,則點(diǎn)EBC邊的距離為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為1的正方形ABCD中,點(diǎn)E是射線(xiàn)BC上一動(dòng)點(diǎn),AE與BD相交于點(diǎn)M,AE或其延長(zhǎng)線(xiàn)與DC或其延長(zhǎng)線(xiàn)相交于點(diǎn)F,G是EF的中點(diǎn),連結(jié)CG.

(1)如圖1,當(dāng)點(diǎn)E在BC邊上時(shí).求證:①△ABMCBM;CGCM.

(2)如圖2,當(dāng)點(diǎn)E在BC的延長(zhǎng)線(xiàn)上時(shí),(1)中的結(jié)論是否成立?請(qǐng)寫(xiě)出結(jié)論,不用證明.

(3)試問(wèn)當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),MCE是等腰三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】提出問(wèn)題:

(1)如圖1,在正方形ABCD中,點(diǎn)E,H分別在BC,AB上,若AE⊥DH于點(diǎn)O,求證:AE=DH;

類(lèi)比探究:

(2)如圖2,在正方形ABCD中,點(diǎn)H,E,G,F(xiàn)分別在邊AB,BC,CD,DA上,若EF⊥HG于點(diǎn)O,探究線(xiàn)段EFHG的數(shù)量關(guān)系,并說(shuō)明理由;

綜合運(yùn)用:

(3)在(2)問(wèn)條件下,HF∥GE,如圖3所示,已知BE=EC=2,EO=2FO,求圖中陰影部分的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】,BD,CE分別是,平分線(xiàn),BD,CE相交于點(diǎn)P

如圖1,如果,______

如圖2,如果,不是直角,請(qǐng)問(wèn)在中所得的結(jié)論是否仍然成立?若成立,請(qǐng)證明:若不成立,請(qǐng)說(shuō)明理由.

小月同學(xué)在完成之后,發(fā)現(xiàn)CDBE、BC三者之間存在著一定的數(shù)量關(guān)系,于是她在邊CB上截取了,連接PF,可證,請(qǐng)你寫(xiě)出小月同學(xué)發(fā)現(xiàn),并完成她的說(shuō)理過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四個(gè)結(jié)論①AH⊥EF,②∠ABF=∠EFB,③AC∥BE,④∠E=∠ABE.正確的是(   )

A. ①②③④ B. ①② C. ①③④ D. ①②④

查看答案和解析>>

同步練習(xí)冊(cè)答案