【題目】注意:為了使同學(xué)們更好地解答本題的第(Ⅱ)問,我們提供了一種分析問題的方法,你可以依照這個(gè)方法按要求完成本題的解答,也可以選用其他方法,按照解答題的一般要求進(jìn)行解答即可.
如圖,將一個(gè)矩形紙片ABCD,放置在平面直角坐標(biāo)系中,A(0,0),B(4,0),D(0,3),M是邊CD上一點(diǎn),將△ADM沿直線AM折疊,得到△ANM.
(Ⅰ)當(dāng)AN平分∠MAB時(shí),求∠DAM的度數(shù)和點(diǎn)M的坐標(biāo);
(Ⅱ)連接BN,當(dāng)DM=1時(shí),求△ABN的面積;
(Ⅲ)當(dāng)射線BN交線段CD于點(diǎn)F時(shí),求DF的最大值.(直接寫出答案)
在研究第(Ⅱ)問時(shí),師生有如下對(duì)話:
師:我們可以嘗試通過(guò)加輔助線,構(gòu)造出直角三角形,尋找方程的思路來(lái)解決問題.
小明:我是這樣想的,延長(zhǎng)MN與x軸交于P點(diǎn),于是出現(xiàn)了Rt△NAP,…
小雨:我和你想的不一樣,我過(guò)點(diǎn)N作y軸的平行線,出現(xiàn)了兩個(gè)Rt△NAP,…
【答案】解:(Ⅰ)∵A(0,0),B(4,0),D(0,3),
∴AD=3,AB=4,
由折疊得:△ANM≌△ADM,
∴∠MAN=∠DAM,
∵AN平分∠MAB,
∴∠MAN=∠NAB,
∴∠BAM=∠MAN=∠NAB,
∵四邊形ABCD是矩形,
∴∠DAB=90°,
∴∠DAM=30°,
∴DM=ADtan∠DAM=3×tan30°=3× = ,
∴∠DAM=30°,M( ,3);
(Ⅱ)延長(zhǎng)MN交AB的延長(zhǎng)線于點(diǎn)Q,
∵四邊形ABCD是矩形,
∴AB∥CD,
∴∠DMA=∠MAQ,
由折疊得:△ANM≌△ADM,
∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,
∴∠MAQ=∠AMQ,
∴MQ=AQ,
設(shè)NQ=x,則AQ=MQ=1+x,
∵∠ANM=90°,
∴∠ANQ=90°,
在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2 ,
∴(x+1)2=32+x2 ,
解得:x=4,
∴NQ=4,AQ=5,
∵AB=4,AQ=5,
∴S△NAB= = × ANNQ= ×3×4= ;
(Ⅲ)如圖3,過(guò)A作AH⊥BF于H,
∵四邊形ABCD是矩形,
∴AB∥CD,
∴∠AHB=∠BCF=90°,
∴△ABH∽△BFC,
∴ ,
Rt△AHN中,∵AH≤AN=3,AB=4,
∴當(dāng)點(diǎn)N、H重合(即AH=AN)時(shí),AH最大,BH最小,CF最小,DF最大,此時(shí)點(diǎn)M、F重合,B、N、M三點(diǎn)共線,如圖4所示,
由折疊得:AD=AH,
∵AD=BC,
∴AH=BC,
在△ABH和△BFC中,
,
∴△ABH≌△BFC(AAS),
∴CF=BH,
由勾股定理得:BH= = = ,
∴CF= ,
∴DF的最大值為DC﹣CF=4﹣
【解析】(Ⅰ)由折疊的性質(zhì)得:△ANM≌△ADM,由角平分線結(jié)合得:∠BAM=∠MAN=∠NAB=30°,由特殊角的三角函數(shù)可求DM的長(zhǎng),寫出M的坐標(biāo);(Ⅱ)如圖2,作輔助線,構(gòu)建直角三角形,設(shè)NQ=x,則AQ=MQ=1+x,在Rt△ANQ中,由勾股定理列等式可得關(guān)于x的方程:(x+1)2=32+x2 , 求出x,得出AB是AQ的 ,即可得出△NAQ和△NAB的關(guān)系,得出結(jié)論;(Ⅲ)如圖3,過(guò)A作AH⊥BF于H,證明△ABH∽△BFC,得 ,Rt△AHN中,∵AH≤AN=3,AB=4,可知:當(dāng)點(diǎn)N、H重合(即AH=AN)時(shí),AH最大,BH最小,CF最小,DF最大,此時(shí)點(diǎn)M、F重合,B、N、M三點(diǎn)共線,如圖4所示,求此時(shí)DF的長(zhǎng)即可.
【考點(diǎn)精析】利用勾股定理的概念和翻折變換(折疊問題)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等斜邊c的平方,即;a2+b2=c2;折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)請(qǐng)你數(shù)一數(shù),圖中有多少個(gè)小于平角的角;
(2)求出∠BOD的度數(shù);
(3)請(qǐng)通過(guò)計(jì)算說(shuō)明OE是否平分∠BOC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店銷售10臺(tái)A型和20臺(tái)B型電腦的利潤(rùn)為4000元,銷售20臺(tái)A型和10臺(tái)B型電腦的利潤(rùn)為3500元.
(1)求每臺(tái)A型電腦和B型電腦的銷售利潤(rùn);
(2)該商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過(guò)A型電腦的2倍,設(shè)購(gòu)進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷售總利潤(rùn)為y元.
①求y關(guān)于x的函數(shù)關(guān)系式;
②該商店購(gòu)進(jìn)A型、B型電腦各多少臺(tái),才能使銷售總利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為a(a>2)的正方形各邊上分別截取AE=BF=CG=DH=1,當(dāng)∠AFQ=∠BGM=∠CHN=∠DEP=45°時(shí),則正方形MNPQ的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某社區(qū)準(zhǔn)備在甲乙兩位射箭愛好者中選出一人參加集訓(xùn),兩人各射了5箭,他們的總成績(jī)(單位:環(huán))相同.
第1次 | 第2次 | 第3次 | 第4次 | 第5次 | |
甲成績(jī) | 9 | 4 | 7 | 4 | 6 |
乙成績(jī) | 7 | 5 | 7 | a | 7 |
(1)a=__,=____;
(2)①分別計(jì)算甲、乙成績(jī)的方差.
②請(qǐng)你從平均數(shù)和方差的角度分析,誰(shuí)將被選中.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使∠BOC=65°.將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處.
(1)如圖①,將三角板MON的一邊ON與射線OB重合時(shí),則∠MOC= ;
(2)如圖②,將三角板MON繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)一定角度,此時(shí)OC是∠MOB的角平分線,求旋轉(zhuǎn)角∠BON= ;∠CON= .
(3)將三角板MON繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖③時(shí),∠NOC=5°,求∠AOM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】課間休息時(shí)小明拿著兩根木棒玩,小華看到后要小明給他玩,小明說(shuō):“較短木棒AB長(zhǎng)40cm,較長(zhǎng)木棒CD長(zhǎng)60cm,將它們的一端重合,放在同一條直線上,此時(shí)兩根木棒的中點(diǎn)分別是點(diǎn)E和點(diǎn)F,則點(diǎn)E和點(diǎn)F間的距離是多少?你說(shuō)對(duì)了我就給你玩”聰明的你請(qǐng)幫小華求出此時(shí)兩根木棒的中點(diǎn)E和F間的距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在我們學(xué)習(xí)過(guò)的數(shù)學(xué)教科書中,有一個(gè)數(shù)學(xué)活動(dòng),其具體操作過(guò)程是:
第一步:對(duì)折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展開(如圖①);
第二步:再一次折疊紙片,使點(diǎn)A落在EF上,并使折痕經(jīng)過(guò)點(diǎn)B,得到折痕BM,同時(shí)得到線段BN(如圖②).
如圖②所示建立平面直角坐標(biāo)系,請(qǐng)解答以下問題:
(Ⅰ)設(shè)直線BM的解析式為y=kx,求k的值;
(Ⅱ)若MN的延長(zhǎng)線與矩形ABCD的邊BC交于點(diǎn)P,設(shè)矩形的邊AB=a,BC=b;
(i)若a=2,b=4,求P點(diǎn)的坐標(biāo);
(ii)請(qǐng)直接寫出a、b應(yīng)該滿足的條件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖A在數(shù)軸上所對(duì)應(yīng)的數(shù)為﹣2.
(1)點(diǎn)B在點(diǎn)A右邊距A點(diǎn)4個(gè)單位長(zhǎng)度,求點(diǎn)B所對(duì)應(yīng)的數(shù);
(2)在(1)的條件下,點(diǎn)A以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn) B 以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向右運(yùn)動(dòng),當(dāng)點(diǎn)A運(yùn)動(dòng)到﹣6所在的點(diǎn)處時(shí),求A,B兩點(diǎn)間距離.
(3)在(2)的條件下,現(xiàn)A點(diǎn)靜止不動(dòng),B點(diǎn)再以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向左運(yùn)動(dòng)時(shí),經(jīng)過(guò)多長(zhǎng)時(shí)間A,B兩點(diǎn)相距4個(gè)單位長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com