【題目】如圖所示,在ABC中,AB=AC,BDACDCEABE,BD,CE相交于F.

求證:AF平分∠BAC.

【答案】證明見解析

【解析】試題分析:先根據(jù)AB=AC,可得∠ABC=ACB,再由垂直,可得90°的角,在BCEBCD中,利用內(nèi)角和為180°,可分別求∠BCE和∠DBC,利用等量減等量差相等,可得FB=FC,再易證ABF≌△ACF,從而證出AF平分∠BAC

試題解析:證明:∵AB=AC(已知),

∴∠ABC=ACB(等邊對等角).

BD、CE分別是高,

BDAC,CEAB(高的定義).

∴∠CEB=BDC=90°.

∴∠ECB=90°ABC,DBC=90°ACB.

∴∠ECB=DBC(等量代換).

FB=FC(等角對等邊),

ABFACF中,

,

ABFACF(SSS)

∴∠BAF=CAF(全等三角形對應(yīng)角相等),

AF平分∠BAC.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將拋物線y=x2+2x+3繞著原點(diǎn)旋轉(zhuǎn)180°,所得拋物線的解析式是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上有AB、CD四個整數(shù)點(diǎn)(即各點(diǎn)均表示整數(shù)),且2AB=BC=3CD,若A、D兩點(diǎn)表示的數(shù)分別為﹣56,且AC的中點(diǎn)為E,BD的中點(diǎn)為M,BC之間距點(diǎn)B的距離為BC的點(diǎn)N,則該數(shù)軸的原點(diǎn)為(  )

A. 點(diǎn)E B. 點(diǎn)F C. 點(diǎn)M D. 點(diǎn)N

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵送彩電下鄉(xiāng),國家決定對購買彩電的農(nóng)戶實(shí)行政府補(bǔ)貼.規(guī)定每購買一臺彩電,政府補(bǔ)貼若干元,經(jīng)調(diào)查某商場銷售彩電臺數(shù)y(臺)與補(bǔ)貼款額x(元)之間大致滿足如圖所示的一次函數(shù)關(guān)系.隨著補(bǔ)貼款額x的不斷增大,銷售量也不斷增加,但每臺彩電的收益Z(元)會相應(yīng)降低且Z與x之間也大致滿足如圖所示的一次函數(shù)關(guān)系。

(1)在政府未出臺補(bǔ)貼措施前,該商場銷售彩電的總收益額為多少元?

(2)在政府補(bǔ)貼政策實(shí)施后,分別求出該商場銷售彩電臺數(shù)y和每臺家電的收益z與政府補(bǔ)貼款額x之間的函數(shù)關(guān)系式;

(3)要使該商場銷售彩電的總收益w(元)最大,政府應(yīng)將每臺補(bǔ)貼款額x定為多少并求出總收益w的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:7a+4a2﹣2a+3a2+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某車間有120名工人,為了了解這些工人日加工零件數(shù)的情況,隨機(jī)抽出其中的30名工人進(jìn)行調(diào)查.整理調(diào)查結(jié)果,繪制出不完整的條形統(tǒng)計圖(如圖).根據(jù)圖中的信息,解答下列問題:

(1)在被調(diào)查的工人中,日加工9個零件的人數(shù)為  名;

(2)在被調(diào)查的工人中,日加工12個零件的人數(shù)為  名,日加工  個零件的人數(shù)最多,日加工15個零件的人數(shù)占被調(diào)查人數(shù)的  %;

(3)依據(jù)本次調(diào)查結(jié)果,估計該車間日人均加工零件數(shù)和日加工零件的總數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)P∠AOB的角平分線上的一點(diǎn),點(diǎn)D在邊OA上.愛動腦筋的小剛經(jīng)過仔細(xì)觀察后,進(jìn)行如下操作:在邊OB上取一點(diǎn)E,使得PE=PD,這時他發(fā)現(xiàn)∠OEP∠ODP之間有一定的數(shù)量關(guān)系,請你寫出∠OEP∠ODP所有可能的數(shù)量關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=2x+b﹣1,b=_____時,函數(shù)圖象經(jīng)過原點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(5,1).

①畫出ABC關(guān)于y軸對稱的A1B1C1,并寫出點(diǎn)C1的坐標(biāo);

②連結(jié)BC1在坐標(biāo)平面的格點(diǎn)上確定一個點(diǎn)P,使B C1P是以B C1為底的等腰直角三角形,畫出B C1P,并寫出所有P點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案