在平面直角坐標系xOy中,二次函數(shù)的圖象經過(,0)和(,0)兩點.
(1)求此二次函數(shù)的表達式.
(2)直接寫出當<x<1時,y的取值范圍.
(3)將一次函數(shù) y=(1-m)x+2的圖象向下平移m個單位后,與二次函數(shù)圖象交點的橫坐標分別是a和b,其中a<2<b,試求m的取值范圍.
(1);(2)<y<3;(3)m<的全體實數(shù).

試題分析:(1)根據(jù)點在曲線上點的坐標滿足方程的關系,由二次函數(shù)的圖象經過(,0)和(,0)兩點,列方程組求解即可.
(2)作圖觀察即可;
(3)根據(jù)題意,得到平移后的一次函數(shù)表達式,由a<2<b得,取x=2,解出即可.
試題解析:(1)由二次函數(shù)的圖象經過(,0)和(,0)兩點,得
解這個方程組,得
∴此二次函數(shù)的表達式為.
(2)如圖,當x=時,y=3,當x=1時y=,
又二次函數(shù)的頂點坐標是().
∴當<x<1時y的取值范圍是<y<3.

(3)將一次函數(shù) 的圖象向下平移m個單位后的一次函數(shù)表達式為.
與二次函數(shù)圖象交點的橫坐標為a和b,
,整理得.
∵a<2<b,∴a≠b.∴,
∴m≠1.
∵a和b滿足a<2<b,∴如圖,當x=2時,.
把x=2代入,解得m<,
∴m的取值范圍為m<的全體實數(shù).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

拋物線y=x2﹣2x+3的頂點坐標是          

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,O為坐標原點,A、B兩點的坐標分別為(-3,0)、(0,4),拋物線y=x2+bx+c經過點B,且頂點在直線x=上.
(1)求拋物線對應的函數(shù)關系式;
(2)若把△ABO沿x軸向右平移得到△DCE,點A、B、O的對應點分別是D、C、E,當四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由;
(3)在(2)的條件下,連接BD,已知對稱軸上存在一點P使得△PBD的周長最小,求出P點的坐標;
(4)在(2)、(3)的條件下,若點M是線段OB上的一個動點(點M與點O、B不重合),過點M作MN∥BD交x軸于點N,連接PM、PN,設OM的長為t,△PMN的面積為S,求S和t的函數(shù)關系式,并寫出自變量t的取值范圍,S是否存在最大值?若存在,求出最大值和此時M點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,在平面直角坐標系中,點A、C分別在y軸和x軸上,AB∥x軸,sinC=,點P從O點出發(fā),沿邊OA、AB、BC勻速運動,點Q從點C出發(fā),以1cm/s的速度沿邊CO勻速運動。點P與點Q同時出發(fā),其中一點到達終點,另一點也隨之停止運動.設點P運動的時間為t(s),△CPQ的面積為S(cm2), 已知S與t之間的函數(shù)關系如圖2中曲線段OE、線段EF與曲線段FG給出.
(1)點P的運動速度為     cm/s, 點B、C的坐標分別為          ;
(2)求曲線FG段的函數(shù)解析式;
(3)當t為何值時,△CPQ的面積是四邊形OABC的面積的?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=x2+bx+c過點(-6,-2),與y軸交于點C,且對稱軸與x軸交于點B(-2,0),頂點為A.
(1)求該拋物線的解析式和A點坐標;
(2)若點D是該拋物線上的一個動點,且使△DBC是以B為直角頂點BC為腰的等腰直角三角形,求點D坐標;
(3)若點M是第二象限內該拋物線上的一個動點,經過點M的直線MN與y軸交于點N,是否存在以O、M、N為頂點的三角形與△OMB全等?若存在,請求出直線MN的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,拋物線經過A(-1,0),C(3,-2)兩點,與軸交于點D,與軸交于另一點B.
(1)求此拋物線的解析式;
(2)若直線)將四邊形ABCD面積二等分,求的值;
(3)如圖2,過點E(1,1)作EF⊥軸于點F,將△AEF繞平面內某點P旋轉180°得△MNQ(點M、N、Q分別與點A、E、F對應),使點M、N在拋物線上,求點N和點P的坐標?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)y=-x2+2bx+c,當x>1時,y的值隨x值的增大而減小,則實數(shù)b的取值范圍是( 。
A.b≥-1B.b≤-1C.b≥1D.b≤1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在△ABC中,∠C=90°,AC=4,BC=2,點A、C分別在x軸、y軸上,當點A在x軸上運動時,點C隨之在y軸上運動.在運動過程中,點B到原點的最大距離是(    )

A.6      B.2      C.2           D.2+2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

拋物線可以由拋物線平移得到,則下列平移過程正確的是
A.先向左平移2個單位,再向上平移3個單位
B.先向左平移2個單位,再向下平移3個位
C.先向右平移2個單位,再向下平移3個單位
D.先向右平移2個單位,再向上平移3個單位

查看答案和解析>>

同步練習冊答案