拋物線(a≠0)的對稱軸是x=2,且經(jīng)過點(diǎn)P(3,0).則a+b+c的值為

[  ]

A.-1

B.0

C.1

D.2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C0的解析式為y=x2-(a+b)x+
c24
,其中a、b、c分別是△ABC中∠A、∠B、∠精英家教網(wǎng)C所對邊的長.
(1)求證:拋物線C0與x軸必有兩個交點(diǎn);
(2)設(shè)P、Q是拋物線C0與x軸的兩個交點(diǎn),求證:P、Q兩點(diǎn)總在x軸的正半軸上;
(3)設(shè)直線l:y=ax-bc與拋物線交于點(diǎn)E、F,與y軸交于點(diǎn)M,N為拋物線與y軸的交點(diǎn),直線x=a是拋物線的對稱軸,當(dāng)△MNE的面積是△MNF的面積的5倍時,確定△ABC的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知經(jīng)過A、B、C三點(diǎn)的二次函數(shù)圖象如圖所示.
(1)求二次函數(shù)的解析式及拋物線頂點(diǎn)M的坐標(biāo);
(2)若點(diǎn)N為線段BM上的一點(diǎn),過點(diǎn)N作x軸的垂線,垂足為點(diǎn)Q.當(dāng)點(diǎn)N在線段BM上運(yùn)動時(點(diǎn)N不與點(diǎn)B、點(diǎn)M重合),設(shè)NQ的長為t,四邊形NQAC的面積為s,求s與t之間的函數(shù)關(guān)系式及自變量t取值范圍;
(3)將△OAC補(bǔ)成矩形,使△OAC的兩個頂點(diǎn)成為矩形一邊的兩個頂點(diǎn),第三個頂點(diǎn)落在矩形這一邊的對邊上,求出矩形未知頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2007•東城區(qū)二模)已知拋物線C1如圖1所示,現(xiàn)將C1以y軸為對稱軸進(jìn)行翻折,得到新的拋物線C2
(1)求拋物線C2的解析式;
(2)在圖1中,將△OAC補(bǔ)成矩形,使△OAC的兩個頂點(diǎn)成為矩形一邊的兩個頂點(diǎn),第三個頂點(diǎn)落在矩形這一邊的對邊上,請直接(不需要寫過程)寫出矩形的周長;
(3)如圖2,若拋物線C1的頂點(diǎn)為M,點(diǎn)P為線段BM上一動點(diǎn)(不與點(diǎn)M、B重合),PN⊥x軸于N,請求出PC+PN的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2-(a+b)x+
c2
4
,a,b,c分別是∠A、∠B、∠C的對邊.
(1)求證:該拋物線與x軸必有兩個交點(diǎn);
(2)設(shè)拋物線與x軸的兩個交點(diǎn)為P、Q,頂點(diǎn)為R,∠PQR=α,已知tanα=
5
,△ABC的周長為10,求拋物線的解析式;
(3)設(shè)直線y=ax-bc與拋物線交于點(diǎn)E、F,與y軸交于點(diǎn)M,若拋物線的對稱軸為x=a,O為坐標(biāo)原點(diǎn),S△MOE:S△MOF=5:1,試判斷△ABC的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在北京奧運(yùn)晉級賽中,中國男籃與美國“夢八”隊之間的對決吸引了全球近20億觀眾觀看,如圖,“夢八”隊員甲正在投籃,已知球出手時(點(diǎn)A處)離地面高
209
米,與籃圈中心的水平距離為7米,當(dāng)球出手后水平距離為4米時到達(dá)最大高度4米,設(shè)籃球運(yùn)行路線為拋物線,籃圈距地面3米.
(1)建立如下圖所示的直角坐標(biāo)系,問此球能否投中?
(2)此時,若中國隊員姚明在甲前1米處跳起蓋帽攔截,已知姚明的最大摸高為3.1米,那么他能否獲得成功?

查看答案和解析>>

同步練習(xí)冊答案