【題目】某校想了解學生每周的課外閱讀時間情況,隨機調(diào)查了部分學生,對學生每周的課外閱讀時間x(單位:小時)進行分組整理,并繪制了如圖所示的不完整的頻數(shù)分布直方圖和扇形統(tǒng)計圖:

根據(jù)圖中提供的信息,解答下列問題:

(1)共隨機調(diào)查了___名學生,課外閱讀時間在68小時之間有___人,并補全頻數(shù)分布直方圖;

(2)求扇形統(tǒng)計圖中m的值和E組對應(yīng)的圓心角度數(shù);

(3)請估計該校3000名學生每周的課外閱讀時間不小于6小時的人數(shù).

【答案】1)100,25,圖見解析;(2)m=40,E的圓心角為14.4;(3)不小于6小時的人數(shù)約為870.

【解析】

1A組人數(shù)÷A組所占百分比=被調(diào)查總?cè)藬?shù),將總?cè)藬?shù)×D組所占百分比=D組人數(shù);

2m=C組人數(shù)÷調(diào)查總?cè)藬?shù)×100,E組對應(yīng)的圓心角度數(shù)=E組占調(diào)查人數(shù)比例×360°;

3)將樣本中課外閱讀時間不小于6小時的百分比乘以3000可得.

(1)隨機調(diào)查學生數(shù)為:10÷10%=100(),

課外閱讀時間在68小時之間的人數(shù)為:100×25%=25(),

補全圖形如下:

(2)m= =40%,E的占比為:1-0.4+0.1+0.21+0.25=0.04

E組對應(yīng)的圓心角為:0.04×360°=14.4°;

(3)3000×(25%+4%)=870().

答:估計該校3000名學生每周的課外閱讀時間不小于6小時的人數(shù)約為870.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在初中階段的函數(shù)學習中,我們經(jīng)歷了“確定函數(shù)的表達式﹣﹣利用函數(shù)圖象研究其性質(zhì)一運用函數(shù)解決問題“的學習過程.在畫函數(shù)圖象時,我們通過描點或平移的方法畫出了所學的函數(shù)圖象.同時,我們也學習了絕對值的意義|a|

結(jié)合上面經(jīng)歷的學習過程,現(xiàn)在來解決下面的問題:在函數(shù)y|kx1|+b中,當x1時,y3,當x0時,y4

1)求這個函數(shù)的表達式;

2)在給出的平面直角坐標系中,請用你喜歡的方法畫出這個函數(shù)的圖象;

3)已知函數(shù)y的圖象如圖所示,結(jié)合你所畫的函數(shù)圖象,直接寫出不等式|kx1|+b的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(探究活動)

如圖1:已知直線ab平行,直線c與直線ab分別相交于點A. B,直線d與直線ab分別相交于點C. D,點P在直線c上移動,連接PC、PD.探究∠CPD、∠PCA、∠PDB之間的數(shù)量關(guān)系.

(探究過程)

(1)當點P在點A. B之間移動時,如圖2,寫出∠CPD、∠PCA、∠PDB之間的關(guān)系,并說明理由.

(2)當點PA. B兩點外移動時,如圖3,寫出∠CPD、∠PCA、∠PDB之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知、兩地相距50千米,甲于某日下午1時騎自行車從地出發(fā)駛往地,乙也在同日下午騎摩托車按同路從地出發(fā)駛往地,如圖所示,圖中的折線和線段分別表示甲、乙所行駛的路程(千米)與該日下午時間(時)之間的關(guān)系.根據(jù)圖象回答下列問題:

1)甲出發(fā)___________小時后,乙才開始出發(fā);乙的速度為__________千米/時;甲騎自行車在全程的平均速度為__________千米/時;

2)乙出發(fā)多少小時后就追上了甲?寫出解答過程;

3)請你自己再提出一個符合題意的問題情境,并解答.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AC=3BC=4,ACB=90°,EF分別為AC、AB的中點,過E、F兩點作O,延長ACOD.若CDO=B,則O的半徑為( 。

A. 4 B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司為獎勵在趣味運動會上取得好成績的員工,計劃購買甲、乙兩種獎品共20件,其中甲種獎品每件40元,乙種獎品每件30元.

(1)如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件;

(2)如果購買乙種獎品的件數(shù)不超過甲種獎品件數(shù)的2倍,總花費不超過680元,求該公司有哪幾種不同的購買方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點是正方形對角線上一點,,點分別是、的中點.

1)求證:;

2)當點在對角線(不含、兩點)上運動時,是否為定值?如果是,請求其值;如果不是,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線軸、軸分別交于點D、C,直線AB軸交于點,與直線CD交于點

1)求直線AB的解析式;

2)點E是射線CD上一動點,過點E軸,交直線AB于點F,若以、、為頂點的四邊形是平行四邊形,請求出點E的坐標;

3)設(shè)P是射線CD上一動點,在平面內(nèi)是否存在點Q,使以B、C、P、Q為頂點的四邊形是菱形?若存在,請直接寫出符合條件的點Q的個數(shù)及其中一個點Q的坐標;否則說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A,B兩種型號的空調(diào),已知購進3A型號空調(diào)和5B型號空調(diào)共用14500元;購進4A型號空調(diào)和10B型號空調(diào)共用25000元.

1)求A,B兩種型號空調(diào)的進價;

2)若超市準備用不超過54000元的資金再購進這兩種型號的空調(diào)共30臺,求最多能購進A種型號的空調(diào)多少臺?

查看答案和解析>>

同步練習冊答案