精英家教網(wǎng)如圖所示,△ABC為等邊三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,則四個(gè)結(jié)論正確的
 

①P在∠A的平分線(xiàn)上; ②A(yíng)S=AR; ③QP∥AR; ④△BRP≌△QSP.
分析:首先根據(jù)角平分線(xiàn)上點(diǎn)的性質(zhì),推出①正確,然后通過(guò)求證△ARP和△ASP全等,推出②正確,再根據(jù)AQ=PQ,推出相關(guān)角相等,通過(guò)等量代換即可得∠QPA=∠QAR,即可推出③正確,依據(jù)等邊三角形的性質(zhì)和外角的性質(zhì)推出∠PQS=∠B,便可推出結(jié)論④.
解答:解:∵PR=PS,PR⊥AB,PS⊥AC,
∴P在∠A的平分線(xiàn)上,
在Rt△ARP和Rt△ASP中,
AP=AP
PR=PS
,
∴Rt△ARP≌Rt△ASP(HL),
∴AS=AR,∠QAP=∠PAR,
∵AQ=PQ,
∴∠PAR=∠QPA,
∴∠QPA=∠QAR
∴QP∥AR,
∵△ABC為等邊三角形,
∴∠B=∠C=∠BAC=60°,
∴∠PAR=∠QPA=30°,
∴∠PQS=60°,
在△BRP和△QSP中,
∠PQS=∠B
∠PRB=∠PSQ
PS=PR
,
∴△BRP≌△QSP(AAS),
∴①②③④項(xiàng)四個(gè)結(jié)論都正確,
故答案為①②③④.
點(diǎn)評(píng):本題主要考查等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)、等邊對(duì)等角,直角三角形的性質(zhì),平行線(xiàn)的判定,關(guān)鍵在于熟練運(yùn)用等邊三角形的性質(zhì)、全等三角形的判定定理,認(rèn)真推理計(jì)算相關(guān)的等量關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,△ABC為等邊三角形,D、E分別是CB、BC延長(zhǎng)線(xiàn)上的點(diǎn),連接AD、AE,且∠D精英家教網(wǎng)AE=120°,試問(wèn):
(1)△ADB與△EDA能相似嗎?
(2)△ADB與△EAC能相似嗎?
(3)BC2=BD•CE能成立嗎?請(qǐng)說(shuō)明以上各問(wèn)的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,△ABC為正三角形,P是BC上的一點(diǎn),PM⊥AB,PN⊥AC,設(shè)四邊形AMPN,△ABC的周長(zhǎng)分別為m、n,則有( 。
A、
1
2
m
n
3
5
B、
2
3
m
n
3
4
C、80%<
m
n
<83%
D、78%<
m
n
<79%

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

附加題.觀(guān)察計(jì)算
當(dāng)a=5,b=3時(shí),
a+b
2
ab
的大小關(guān)系是

當(dāng)a=4,b=4時(shí),
a+b
2
ab
的大小關(guān)系是
=
=

●探究證明
如圖所示,△ABC為圓O的內(nèi)接三角形,AB為直徑,過(guò)C作CD⊥AB于D,設(shè)AD=a,BD=b.
(1)分別用a,b表示線(xiàn)段OC,CD;
(2)探求OC與CD表達(dá)式之間存在的關(guān)系(用含a,b的式子表示).
●歸納結(jié)論
根據(jù)上面的觀(guān)察計(jì)算、探究證明,你能得出
a+b
2
ab
的大小關(guān)系是:
a+b
2
ab
(當(dāng)a=b時(shí),取“=”)
a+b
2
ab
(當(dāng)a=b時(shí),取“=”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,△ABC為直角三角形,∠ACB=90°,BF平分∠ABC,CD⊥AB于D,CD交BF于點(diǎn)G,GE∥CA,求證:CE與FG互相垂直平分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的△ABC為等邊三角形,邊長(zhǎng)為2,D為BC中點(diǎn),△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到△AEB,則BE=
1
1

查看答案和解析>>

同步練習(xí)冊(cè)答案