【題目】如圖1, ABC中,CDABD,BD: AD:CD=2:3:4,

(1)試說明△ABC是等腰三角形;

(2)已知SABC=40cm2,如圖2,動點M從點B出發(fā)以每秒1cm的速度沿線段BA向點A運動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運動,當(dāng)其中一點到達終點時整個運動都停止.設(shè)點M運動的時間為t(),若△DMN的邊與BC平行,求t的值;

【答案】1)見解析(256.

【解析】

1)設(shè)BD=2x,AD=3xCD=4x,則AB=5x,由勾股定理求出AC,即可得出結(jié)論;

2)由△ABC的面積求出BDAD、CD、AC;當(dāng)MNBC時,AM=AN;當(dāng)DNBC時,AD=AN;得出方程,解方程即可.

(1)證明:設(shè)BD=2x,AD=3xCD=4x,

AB=5x,

RtACD,AC= =5x,

AB=AC,

∴△ABC是等腰三角形;

(2)SABC=×5x×4x=40cm2,而x>0

x=2cm,

BD=4cm,AD=6cm,CD=8cmAC=10cm.

①當(dāng)MNBC時,AM=AN,

10t=t

t=5;

當(dāng)DNBC時,AD=AN,

得:t=6;

∴若△DMN的邊與BC平行時,t值為56.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】班級組織同學(xué)乘大巴車前往“研學(xué)旅行”基地開展愛國教育活動,基地離學(xué)校有90公里,隊伍8:00從學(xué)校出發(fā).蘇老師因有事情,8:30從學(xué)校自駕小車以大巴1.5倍的速度追趕,追上大巴后繼續(xù)前行,結(jié)果比隊伍提前15分鐘到達基地.問:

(1)大巴與小車的平均速度各是多少?

(2)蘇老師追上大巴的地點到基地的路程有多遠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列各組條件中,不能說明的是(

A.AB=DE,∠B=E,∠C=FB.AB=DE,∠A=D,∠B=E

C.AC=DFBC=EF,∠A=DD.AB=DEBC=EF,AC=ED

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小方家住戶型呈長方形,平面圖如下(單位:米),現(xiàn)準(zhǔn)備鋪設(shè)地面,三間臥室鋪設(shè)木地板,其它區(qū)城鋪設(shè)地磚.

(1)a的值.

(2)鋪設(shè)地面需要木地板和地磚各多少平方米(用含的代數(shù)式表示)

(3)按市場價格,木地板單價為300/平方米,地磚單價為100/平方米,裝修公司有兩種活動方案,如表:

活動方案

木地板價格

地磚價格

總安裝費

A

8

8.5

2000

B

9

8.5

免收

已知臥室2的面積是21平方米,則小方家應(yīng)選擇哪種活動,使鋪設(shè)地面的總費用(包括材料費及安裝費)更低?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結(jié)論:

abc>0;b>a+c;9a+3b+c>0; c<-3a; a+b≥m(am+b),其中正確的有( )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形 ABCD 中,AEDF 分別是∠BAD,∠ADC 的平分線,且 AEDF 于點 O 延長 DF AB 的延長線于點 M

1)求證:ABDC ;

2)若∠MBC=120°,∠BAD=108°,求∠C,∠DFE 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是按照一定規(guī)律畫出的一列“樹型”圖:

經(jīng)觀察可以發(fā)現(xiàn):圖(2)比圖(1)多出2個“樹枝”,圖(3)比圖(2)多出5個“樹枝”,圖(4)比圖(3)多出10個“樹枝”,照此規(guī)律,圖(7)比圖(6)多出_____個“樹枝”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,點A,D,E在同一直線上,連接BE,則∠AEB的度數(shù)為  ,線段AD、BE之間的關(guān)系  

(2)拓展探究:如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A、D、E在同一直線上,CM為△DCEDE邊上的高,連接BE.①請判斷∠AEB的度數(shù),并說明理由;②當(dāng)CM=5時,ACBE的長度多6時,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠BAC=90°,AB=AC,ADBC于點D.

(1)如圖1,點E,F(xiàn)AB,AC上,且∠EDF=90°.求證:BE=AF;

(2)M,N分別在直線AD,AC上,且∠BMN=90°.

①如圖2,當(dāng)點MAD的延長線上時,求證:AB+AN=AM;

②當(dāng)點M在點A,D之間,且∠AMN=30°時,已知AB=2,直接寫出線段AM的長.

查看答案和解析>>

同步練習(xí)冊答案