【題目】如圖,在平面直角坐標(biāo)系中,直線分別與軸,軸交于,兩點(diǎn),與直線交于點(diǎn),.
(1)求的值;
(2)求出直線的解析式;
(3)為線段上一點(diǎn)(不含端點(diǎn)),連接,一動點(diǎn)從點(diǎn)出發(fā),沿線段以每秒1個單位長度的速度運(yùn)動到,再沿線段以每秒個單位長度的速度運(yùn)動到點(diǎn)后停止,請直接寫出點(diǎn)在整個運(yùn)動過程的最少用時.(提示:過點(diǎn)和點(diǎn),分別作軸,軸的垂線,,兩垂線交于點(diǎn))
【答案】(1)1;(2)y=2x;(3)點(diǎn)H在整個運(yùn)動過程的最少用時是6秒.
【解析】
(1)先求直線l1的解析式,從而可以求點(diǎn)B,點(diǎn)A的坐標(biāo),求出OA和OB即可求得.
(2)由S△AOC=9,OA=3即可求點(diǎn)C的縱坐標(biāo),點(diǎn)C是直線l1與直線l2的交點(diǎn),即可求出直線l2的解析式
(3)過點(diǎn)C作CJ⊥y軸于J,過點(diǎn)P作PQ⊥CJ于點(diǎn)Q,由題意得,點(diǎn)H在整個運(yùn)動過程的用時t=,即點(diǎn)H在整個運(yùn)動過程所用的時間是線段PO與PH的長度之和,也就是點(diǎn)O、P、Q共線時有最小值.
解:(1)∵直線11:y=k1x+3經(jīng)過點(diǎn)A(-3,0),
∴0=-3k1+3,即k1=1且OA=3
故直線11的解析式為:y=x+3
∴直線l1:y=x+3與y軸交點(diǎn)是B(0,3)即OB=3
∴
(2)∵S△AOC=9,OA=3
∴點(diǎn)C到OA也就是到x軸的距離是6,由圖可設(shè)C(x,6)
∴ ,解得
故直線l2的解析式是:y=2x
(3)如圖
過點(diǎn)C作CJ⊥y軸于J,過點(diǎn)P作PQ⊥CJ于點(diǎn)Q,
∵動點(diǎn)H從點(diǎn)O出發(fā),沿線段OP以每秒1個單位長度的速度運(yùn)動到P,遭到沿線段PC以每秒個單位長度的速度運(yùn)動到點(diǎn)C后停止
∴點(diǎn)H在整個運(yùn)動過程的用時t=
∵tan∠BAO=,則∠BAO=45°
故∠CPQ=∠ABO=45°
∴PQ=PCcos∠CPQ=
∴t=,
即點(diǎn)H在整個運(yùn)動過程所用的時間是線段PO與PH的長度之和
∴當(dāng)點(diǎn)P與點(diǎn)B重合,也就是點(diǎn)O、P、Q共線時,OP+QP取得最小值,且(OP+QP)最小=OJ=6,
即點(diǎn)H在整個運(yùn)動過程所用時間的最小值為6秒.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).
請根據(jù)以上信息回答:
(1)本次參加抽樣調(diào)查的居民有多少人?
(2)將兩幅不完整的圖補(bǔ)充完整;
(3)若居民區(qū)有8000人,請估計愛吃D粽的人數(shù);
(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校團(tuán)委為了教育學(xué)生,開展了以感恩為主題的有獎?wù)魑幕顒,并為獲獎的同學(xué)頒發(fā)獎品.小紅與小明去文化商店購買甲、乙兩種筆記本作為獎品,若買甲種筆記本20個,乙種筆記本10個,共用110元;且買甲種筆記本30個比買乙種筆記本20個少花10元.
(1)求甲、乙兩種筆記本的單價各是多少元?
(2)若本次購進(jìn)甲種筆記本的數(shù)量比乙種筆記本的數(shù)量的2倍還少10個,且購進(jìn)兩種筆記本的總數(shù)量不少于80本,總金額不超過320元.請你設(shè)計出本次購進(jìn)甲、乙兩種筆記本的所有方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(0,4),B(7,0),C(7,4),連接AC,BC得到矩形AOBC,點(diǎn)D的邊AC上,將邊OA沿OD折疊,點(diǎn)A的對應(yīng)邊為A'.若點(diǎn)A'到矩形較長兩對邊的距離之比為1:3,則點(diǎn)A'的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,我們定義直線y=ax﹣a為拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)的“夢想直線”;有一個頂點(diǎn)在拋物線上,另有一個頂點(diǎn)在y軸上的三角形為其“夢想三角形”.
已知拋物線與其“夢想直線”交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C.
(1)填空:該拋物線的“夢想直線”的解析式為 ,
(2)如圖,點(diǎn)M為線段CB上一動點(diǎn),將△ACM以AM所在直線為對稱軸翻折,點(diǎn)C的對稱點(diǎn)為N,若△AMN為該拋物線的“夢想三角形”,求點(diǎn)N的坐標(biāo);
(3)當(dāng)點(diǎn)E在拋物線的對稱軸上運(yùn)動時,在該拋物線的“夢想直線”上,是否存在點(diǎn)F,使得以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請直接寫出點(diǎn)E、F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場服裝部為了調(diào)動營業(yè)員的積極性,決定實行目標(biāo)管理,根據(jù)目標(biāo)完成的情況對營業(yè)員進(jìn)行適當(dāng)?shù)莫剟睿疄榱舜_定一個適當(dāng)?shù)脑落N售目標(biāo),商場服裝部統(tǒng)計了每位營業(yè)員在某月的銷售額(單位:萬元),數(shù)據(jù)如下:
17 | 18 | 16 | 13 | 24 | 15 | 28 | 26 | 18 | 19 |
22 | 17 | 16 | 19 | 32 | 30 | 16 | 14 | 15 | 26 |
15 | 32 | 23 | 17 | 15 | 15 | 28 | 28 | 16 | 19 |
對這30個數(shù)據(jù)按組距3進(jìn)行分組,并整理、描述和分析如下.
頻數(shù)分布表
組別 | 一 | 二 | 三 | 四 | 五 | 六 | 七 |
銷售額 | |||||||
頻數(shù) | 7 | 9 | 3 | 2 | 2 |
數(shù)據(jù)分析表
平均數(shù) | 眾數(shù) | 中位數(shù) |
20.3 | 18 |
請根據(jù)以上信息解答下列問題:
(1)填空:a= ,b= ,c= ;
(2)若將月銷售額不低于25萬元確定為銷售目標(biāo),則有 位營業(yè)員獲得獎勵;
(3)若想讓一半左右的營業(yè)員都能達(dá)到銷售目標(biāo),你認(rèn)為月銷售額定為多少合適?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某出租公司有若干輛同一型號的貨車對外出租,每輛貨車的日租金實行淡季、旺季兩種價格標(biāo)準(zhǔn),旺季每輛貨車的日租金比淡季上漲.據(jù)統(tǒng)計,淡季該公司平均每天有輛貨車未出租,日租金總收入為元;旺季所有的貨車每天能全部租出,日租金總收入為元.
(1)該出租公司這批對外出租的貨車共有多少輛?淡季每輛貨車的日租金多少元?
(2)經(jīng)市場調(diào)查發(fā)現(xiàn),在旺季如果每輛貨車的日租金每上漲元,每天租出去的貨車就會減少輛,不考慮其它因素,每輛貨車的日租金上漲多少元時,該出租公司的日租金總收入最高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AC為⊙O的直徑,點(diǎn)D在BC上,AC=CD,∠ACB=2∠BAD
(1)求證:AB與⊙O相切;
(2)連接OD,若tanB=,求tan∠ADO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點(diǎn)E,F分別在BC和CD上,下列結(jié)論:①CE=CF;②BD=1+;③BE+DF=EF;④∠AEB=75°.其中正確的序號是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com