如圖,拋物線與y軸突于A點,過點A的直線y=kx+l與拋物線交于另一點B,過點B作BC⊥x軸,垂足為點C(3,0)

(1)求直線AB的函數(shù)關(guān)系式;

(2)動點P在線段OC上從原點出發(fā)以每秒一個單位的速度向C移動,過點產(chǎn)作PN⊥x軸,交直線AB于點M,交拋物線于點N,設(shè)點P移動的時間為t秒,MN的長度為s個單位,求s與t的函數(shù)關(guān)系式,并求出線段MN的最大值;

(3)設(shè)在(2)的條件下(不考慮點P與點O,點C重合的情況),連接CM,BN,當t為何值時,四邊形BCMN為平行四邊形?問對于所求的t值,平行四邊形BCMN是否菱形?請說明理由.

 

【答案】

(1);(2),;(3)當時,四邊形BCMN為平行四邊形;當時,平行四邊形BCMN為菱形

【解析】

試題分析:(1)把x=3代入即可求得B點的坐標,再把點B的坐標代入即可求得直線AB的函數(shù)關(guān)系式;

(2)把x=t分別代入到即可得到點M、N的縱坐標,從而可以表示出MN的長,再根據(jù)二次函數(shù)的性質(zhì)求解即可;

(3)在四邊形BCMN中,由BC∥MN可知當BC=MN時,四邊形BCMN即為平行四邊形,即可求得t的值,由勾股定理求得CM的長,再根據(jù)菱形的性質(zhì)求解即可.

(1)把x=3代入,得,

∴B點的坐標分別(3,

把點B的坐標代入,得,解得

所以;

(2)把x=t分別代入到

得到點M、N的縱坐標分別為、

∴MN=-()=

=-

∴MN最大=S最大;

(3)在四邊形BCMN中,∵BC∥MN

∴當BC=MN時,四邊形BCMN即為平行四邊形

,得

即當時,四邊形BCMN為平行四邊形 

時,PC=2,PM=,由勾股定理求得CM =

此時BC=CM=,平行四邊形BCMN為菱形;

時,PC=1,PM=2,由勾股定理求得CM=

此時BC≠CM,平行四邊形BCMN不是菱形;

所以,當時,平行四邊形BCMN為菱形.

考點:二次函數(shù)的綜合題

點評:此類問題綜合性強,難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2013年河南省平頂山市中考第二次調(diào)研測試(二模)數(shù)學試卷(帶解析) 題型:解答題

如圖,拋物線與y軸突于A點,過點A的直線y=kx+l與拋物線交于另一點B,過點B作BC⊥x軸,垂足為點C(3,0)

(1)求直線AB的函數(shù)關(guān)系式;
(2)動點P在線段OC上從原點出發(fā)以每秒一個單位的速度向C移動,過點產(chǎn)作PN⊥x軸,交直線AB于點M,交拋物線于點N,設(shè)點P移動的時間為t秒,MN的長度為s個單位,求s與t的函數(shù)關(guān)系式,并求出線段MN的最大值;
(3)設(shè)在(2)的條件下(不考慮點P與點O,點C重合的情況),連接CM,BN,當t為何值時,四邊形BCMN為平行四邊形?問對于所求的t值,平行四邊形BCMN是否菱形?請說明理由.

查看答案和解析>>

同步練習冊答案