【題目】如圖,在6×8的網(wǎng)格圖中,每個小正方形邊長均為1,原點O△ABC的頂點均為格點.

(1)以O為位似中心,在網(wǎng)格圖中作△A′B′C′,使△A′B′C′△ABC位似,且位似比為1:2;(保留作圖痕跡,不要求寫作法和證明)

(2)若點C的坐標為(2,4),則點A′的坐標為(   ,   ),點C′的坐標為(   ,   ),SA′B′C′:SABC=   

【答案】(1)詳見解析;(2)﹣1,0;1,2;1:4.

【解析】

(1)利用△A′B′C′△ABC位似且位似比為1:2,可將對應(yīng)點坐標乘以即可;

(2)利用所畫圖形得出對應(yīng)點坐標后,利用相似三角形的性質(zhì)求解即可.

解:(1)由圖可得A(-2,0),B(4,0),C(2,4),A’(-1,0),B’(2,0),C’(1,2),

如圖所示:△A′B′C′即為所求;

(2)A′(﹣1,0),C′(1,2),

SA′B′C′:SABC=1:4.

故答案為:﹣1,0;1,2;1:4.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(1)解方程:

(2)計算:3a(2a2-9a+3)-4a(2a-1)

(3)計算:()×()+|-1|+(5-2π)0

(4)先化簡,再求值:(xy2+x2y),其中x=,y=.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設(shè)a,b是任意兩個實數(shù),規(guī)定a與b之間的一種運算“⊕”為:a⊕b=,

例如:1⊕(﹣3)==﹣3,(﹣3)⊕2=(﹣3)﹣2 =﹣5,

(x2+1)⊕(x﹣1)=(因為x2+1>0)

參照上面材料,解答下列問題:

(1)2⊕4=  ,(﹣2)⊕4=  ;

(2)若x>,且滿足(2x﹣1)⊕(4x2﹣1)=(﹣4)⊕(1﹣4x),求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線是第一、三象限的角平分線.

1)由圖觀察易知A02)關(guān)于直線l的對稱點A′的坐標為(2,0),請在圖中分別標明B5,3)、C-2,5)關(guān)于直線l的對稱點B′、C′的位置,并寫出他們的坐標:______________________;

2)結(jié)合圖形觀察以上三組點的坐標,你會發(fā)現(xiàn):坐標平面內(nèi)任一點關(guān)于第一、三象限的角平分線的對稱點的坐標為___________(不必證明);

(3)已知兩點,試在直線L上畫出點Q,使點QDE兩點的距離之和最小,求QD+QE的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B、∠C的平分線BE,CD相交于點F

(1)ABC40°,∠A60°,求∠BFD的度數(shù);

(2)直接寫出∠A與∠BFD的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(﹣3,0),與y軸交于點C

(1)求拋物線的解析式;

(2)設(shè)拋物線的對稱軸與x軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由;

(3)如圖②,若點E為第二象限拋物線上一動點,連接BECE,求四邊形BOCE面積的最大值,并求此時E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點PBC中點,兩邊PE、PF分別交AB、AC于點E、F,當∠EPF△ABC內(nèi)繞頂點P旋轉(zhuǎn)時(點E不與A、B重合),給出以下四個結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③2S四邊形AEPF=SABC;④BE+CF=EF.上述結(jié)論中始終正確的有(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班同學從學校出發(fā)去太陽島春游,大部分同學乘坐大客車先出發(fā),余下的同學乘坐小轎車20分鐘后出發(fā),沿同一路線行駛.大客車中途停車等候5分鐘,小轎車趕上來之后,大客車以原速度的繼續(xù)行駛,小轎車保持速度不變.兩車距學校的路程S(單位:km)和大客車行駛的時間t(單位:min)之間的函數(shù)關(guān)系如圖所示.下列說法中正確的個數(shù)是( 。

①學校到景點的路程為40km;

②小轎車的速度是1km/min;

a15;

④當小轎車駛到景點入口時,大客車還需要10分鐘才能到達景點入口.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(模型建立)

1)如圖1,等腰直角三角形ABC中,∠ACB90°CACB,直線ED經(jīng)過點C,過AADED于點D,過BBEED于點E

求證:CDA≌△BEC

(模型運用)

2)如圖2,直線l1yx+4與坐標軸交于點A、B,將直線l1繞點A逆時針旋轉(zhuǎn)90°至直線l2,求直線l2的函數(shù)表達式.

(模型遷移)

如圖3,直線l經(jīng)過坐標原點O,且與x軸正半軸的夾角為30°,點A在直線l上,點Px軸上一動點,連接AP,將線段AP繞點P順時針旋轉(zhuǎn)30°得到BP,過點B的直線BCx軸于點C,∠OCB30°,點Bx軸的距離為2,求點P的坐標.

查看答案和解析>>

同步練習冊答案