【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC交BC于點D,DE⊥AB于點E,則下列結(jié)論:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④若AC=4BE,則S△ABC=8S△BDE其中正確的有( )
A. 1個
B. 2個
C. 3個
D. 4個
【答案】B
【解析】
根據(jù)題中條件,結(jié)合圖形及角平分線的性質(zhì)得到結(jié)論,與各選項進行比對,排除錯誤答案,選出正確的結(jié)果.
∵AD平分∠BAC,
∴∠DAC=∠DAE,
∵∠C=90°,DE⊥AB,
∴∠C=∠E=90°,
∵AD=AD,
∴△DAC≌△DAE(AAS),
∴∠CDA=∠EDA,
∴①AD平分∠CDE正確;
無法證明∠BDE=60°,
∴③DE平分∠ADB錯誤;
∵BE+AE=AB,AE=AC,
∵AC=4BE,
∴AB=5BE,AE=4BE,
∴S△ADB=5S△BDE,S△ADC=4S△BDE,
∴S△ABC=9S△BDE,
∴④錯誤;
∵∠BDE=90°-∠B,∠BAC=90°-∠B,
∴∠BDE=∠BAC,
∴②∠BAC=∠BDE正確.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABP中,C是BP邊上一點,∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點E.
(1)求證:PA是⊙O的切線;
(2)過點C作CF⊥AD,垂足為點F,延長CF交AB于點G,若AGAB=12,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是__________(填序號)
①若.則一定有 ;②若,互為相反數(shù),則;③幾個有理數(shù)相乘,若負(fù)因數(shù)有偶數(shù)個,那么他們的積為正數(shù);④兩數(shù)相加,其和小于每一個加數(shù),那么這兩個加數(shù)必是兩個負(fù)數(shù):⑤0除以任何數(shù)都為0;⑥若 ,則.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在四邊形ABCD中,∠A=∠C=90°.
(1)如圖1,若BE平分∠ABC,DF平分∠ADC的鄰補角,請寫出BE與DF的位置關(guān)系,并證明.
(2)如圖2,若BF、DE分別平分∠ABC、∠ADC的鄰補角,判斷DE與BF位置關(guān)系并證明.
(3)如圖3,若BE、DE分別六等分∠ABC、∠ADC的鄰補角(即∠CBE=∠CBM,∠CDE=∠CDN),則∠E= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CA=CB,CD=CE,∠ACB=∠DCE=40°,AD、BE交于點H,連接CH,則∠CHE=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點A、B、C的坐標(biāo)分別為,,,點P,Q是邊上的兩個動點點P不與點C重合,以P,O,Q為頂點的三角形與全等,則滿足條件的點P的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在徐匯區(qū)開展“創(chuàng)建全國文明城區(qū)”期間,某工程隊承擔(dān)了某小區(qū)900米長的污水管道改造任務(wù),工程隊在改造完180米管道后,引進了新設(shè)備,每天的工作效率比原來提高了20%,結(jié)果共用30天完成了任務(wù),問引進新設(shè)備后工程隊每天改造管道多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一張長方形紙片寬AB=DC=8 cm,長BC=AD=10 cm,∠B=∠C=∠D=∠BAD=90°.現(xiàn)將紙片折疊,使頂點D落在BC邊上的點F處(折痕為AE),求EC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=80°,BC=12,AB的垂直平分線交BC邊于點E,AC的垂直平分線交BC邊于點N,NE=6,則∠NAE=______°,△EAN的周長=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com