【題目】一輛出租車從A地出發(fā),在一條東西走向的街道上往返,每次行駛的路程(記向東為正)記錄如下(x6x14,單位:km):

1)寫出這輛出租車每次行駛的方向;

2)求經(jīng)過連續(xù)4次行駛后,這輛出租車所在的位置(結(jié)果可用x表示);

3)這輛出租車一共行駛了多少路程(結(jié)果用x表示)?

【答案】1)第一次是向東,第二次是向西,第三次是向東,第四次是向西;(2)向東(7km;(3)(km

【解析】

1)以A為原點,根據(jù)數(shù)的符號即可判斷車的行駛方向;
2)將四次行駛路程(包括方向)相加,根據(jù)判斷出租車的位置;
3)將四次行駛路程的絕對值相加即可.

1)解:第一次是向東,第二次是向西,第三次是向東,第四次是向西;

2

,

,

經(jīng)過連續(xù)4次行駛后,這輛出租車所在的位置是向東(7km

3):

答:這輛出租車一共行駛了(km的路程.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小都相同正常水位時,大孔水面寬度AB=20米,頂點M距水面6米(即MO=6米),小孔頂點N距水面45米(即NC=45米)當水位上漲剛好淹沒小孔時,借助圖中的直角坐標系,求此時大孔的水面寬度EF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在銳角ABC中,ABC=45°,高線AD、BE相交于點F.

(1)判斷BF與AC的數(shù)量關(guān)系并說明理由;

(2)如圖2,將ACD沿線段AD對折,點C落在BD上的點M,AM與BE相交于點N,當DEAM時,判斷NE與AC的數(shù)量關(guān)系并說明理由.

【答案】(1)BF=AC,理由見解析;2NE=AC,理由見解析.

【解析】試題分析:(1)如圖1,證明△ADC≌△BDF(AAS),可得BF=AC;
(2)如圖2,由折疊得:MD=DC,先根據(jù)三角形中位線的推論可得:AE=EC,由線段垂直平分線的性質(zhì)得:AB=BC,則∠ABE=∠CBE,結(jié)合(1)得:△BDF≌△ADM,則∠DBF=∠MAD,最后證明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.

試題解析:

1BF=AC,理由是:

如圖1,ADBCBEAC,

∴∠ADB=AEF=90°,

∵∠ABC=45°,

∴△ABD是等腰直角三角形,

AD=BD,

∵∠AFE=BFD

∴∠DAC=EBC,

ADCBDF中,

,

∴△ADC≌△BDFAAS),

BF=AC;

2NE=AC,理由是:

如圖2,由折疊得:MD=DC,

DEAM,

AE=EC,

BEAC

AB=BC,

∴∠ABE=CBE,

由(1)得:ADC≌△BDF,

∵△ADC≌△ADM

∴△BDF≌△ADM,

∴∠DBF=MAD,

∵∠DBA=BAD=45°,

∴∠DBA﹣DBF=BAD﹣MAD,

即∠ABE=BAN,

∵∠ANE=ABE+BAN=2ABE

NAE=2NAD=2CBE,

∴∠ANE=NAE=45°

AE=EN,

EN=AC

型】解答
結(jié)束】
19

【題目】某校學生會決定從三明學生會干事中選拔一名干事當學生會主席,對甲、乙、丙三名候選人進行了筆試和面試,三人的測試成績?nèi)缦卤硭荆?/span>

測試項目

測試成績/分

筆試

75

80

90

面試

93

70

68

根據(jù)錄用程序,學校組織200名學生采用投票推薦的方式,對三人進行民主測評,三人得票率如扇形統(tǒng)計圖所示(沒有棄權(quán),每位同學只能推薦1人),每得1票記1分

(1)分別計算三人民主評議的得分;

(2)根據(jù)實際需要,學校將筆試、面試、民主評議三項得分按3:3:4的比例確定個人成績,三人中誰會當選學生會主席?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A0,4)是直角坐標系y軸上一點,動點P從原點O出發(fā),沿x軸正半軸運動,速度為每秒1個單位長度,以P為直角頂點在第一象限內(nèi)作等腰RtAPB.設(shè)P點的運動時間為t秒.

1)若AB//x軸,求t的值;

2)當t=3時,坐標平面內(nèi)有一點M(不與A重合),使得以M、P、B為頂點的三角形和△ABP全等,請求出點M的坐標;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),平面直角坐標系中,點A、B分別在x、y軸上,點B的坐標為(0,1),∠BAO=30°.

1)求AB的長度;

2)以AB為一邊作等邊△ABE,作OA的垂直平分線MNAB的垂線AD于點,求證:BD=OE;

3)在(2)的條件下,連接DEABF,求證:FDE的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線與反比例函數(shù)的圖像在第一象限有一個公共點,其橫坐標為1,則一次函數(shù)的圖像可能是( )

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線x軸、y軸分別交于A、B兩點,點Cy軸上一點將坐標平面沿直線AC折疊,使點B剛好落在x負半軸上,則點C的坐標為  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為做好防汛工作,防汛指揮部決定對某水庫的水壩進行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來的高度BC.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,BEADBFCD,垂足分別為E、F

(1)求證:BEBF;

(2)當菱形ABCD的對角線AC8,BD6時,求BE的長.

查看答案和解析>>

同步練習冊答案