【題目】“珍重生命,注意安全!”同學(xué)們?cè)谏舷聦W(xué)途中一定要注意騎車安全,小明騎單車上學(xué),當(dāng)他騎了一段時(shí),想起要買文具,于是又折回到剛經(jīng)過的文具店,買到文具后繼續(xù)去學(xué)校,下圖是他本次所用的時(shí)間與離家路程的關(guān)系示意圖,根據(jù)圖中提供的信息回答下列問題:
(1)小明家到學(xué)校的路程是___________米;小明在文具店停留了__________分鐘.
(2)本次上學(xué)途中,小明一共行駛了多少米?
(3)我們認(rèn)為騎單車的速度超過300米/分鐘就超越了安全限度,問:在整個(gè)上學(xué)的途中哪個(gè)時(shí)間段小明騎車速度最快,速度在安全限度內(nèi)嗎?
【答案】(1)1500;4;(2)2700米;(3)不在
【解析】
(1)根據(jù)函數(shù)圖像即可得到小明家到學(xué)校的路程與在文具店停留的時(shí)間;
(2)根據(jù)圖像可知需分3段進(jìn)行計(jì)算;(3)分別求出各時(shí)間段的速度,即可進(jìn)行比較判斷.
(1)小明家到學(xué)校的路程是1500米;小明在文具店停留了4分鐘
(2 )行駛的總路程為:
(米)
所以,本次上學(xué)途中小明一共行駛了2700米
3.由圖象可知:分鐘時(shí),平均速度(米/分),
分鐘時(shí),平均速度 (米/分),
分鐘時(shí),平均速度 (米/分),
所以,分鐘時(shí)速度最快,不在安全限度內(nèi).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=(2m-3)x+m+2.
(1)若函數(shù)圖像過原點(diǎn),求m的值;
(2)若函數(shù)圖像過點(diǎn)(-1,0),求m的值;
(3)若函數(shù)圖像平行于直線y=-x+2求m的值;
(4)若函數(shù)圖像經(jīng)過第一、二、四象限,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知DC∥FP,∠1=∠2,∠FED=28,∠AGF=80,FH平分∠EFG.
(1)說(shuō)明:DC∥AB;
(2)求∠PFH的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種小商品的成本價(jià)為10元/kg,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量w(kg)與銷售價(jià)x(元/kg)有如下關(guān)系w=﹣2x+100,設(shè)這種產(chǎn)品每天的銷售利潤(rùn)為y(元).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)售價(jià)定為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,△ABC的角平分線BD,CE相交于點(diǎn)P.
(1)如果∠A=80,求∠BPC= .
(2)如圖②,過點(diǎn)P作直線MN∥BC,分別交AB和AC于點(diǎn)M和N,試求∠MPB+∠NPC的度數(shù)(用含∠A的代數(shù)式表示) .
(3)將直線MN繞點(diǎn)P旋轉(zhuǎn)。
(i)當(dāng)直線MN與AB,AC的交點(diǎn)仍分別在線段AB和AC上時(shí),如圖③,試探索∠MPB,∠NPC,∠A三者之間的數(shù)量關(guān)系,并說(shuō)明你的理由。
(ii)當(dāng)直線MN與AB的交點(diǎn)仍在線段AB上,而與AC的交點(diǎn)在AC的延長(zhǎng)線上時(shí),如圖④,試問(i)中∠MPB,∠NPC,∠A三者之間的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)說(shuō)明你的理由;若不成立,請(qǐng)給出∠MPB,∠NPC,∠A三者之間的數(shù)量關(guān)系,并說(shuō)明你的理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2mx+m2-1=0.
(1)不解方程,判別方程的根的情況;
(2)若方程有一個(gè)根為3,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)踐操作:如圖,在 中,∠ABC=90°,利用直尺和圓規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫作法):
(1)作∠BCA的角平分線,交AB于點(diǎn)O;
(2)以O(shè)為圓心,OB為半徑作圓.
綜合運(yùn)用:在你所作的圖中,
(3)AC與⊙O的位置關(guān)系是(直接寫出答案);
(4)若BC=6,AB=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形BEDG和矩形BNDQ中,BE=BN,DE=DN.
(1)將兩個(gè)矩形疊合成如圖10,求證:四邊形ABCD是菱形;
(2)若菱形ABCD的周長(zhǎng)為20,BE=3,求矩形BEDG的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面推理過程:
如圖,已知DE∥BC,DF、BE分別平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:
∵DE∥BC(已知)
∴∠ADE= ( )
∵DF、BE分別平分∠ADE、∠ABC,
∴∠ADF= ( )
∠ABE= ( )
∴∠ADF=∠ABE
∴ ∥ ( )
∴∠FDE=∠DEB.( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com