【題目】如圖,△ABD和△ACE中,AB=AD,AC=AE,∠DAB=∠CAE=α,連接DC、BE.
(1)如圖1,求證:DC=BE;
(2)如圖2,DC,BE交于點(diǎn)F,用含α的式子表示∠AFE;
(3)如圖3,過(guò)A作AG⊥DC于點(diǎn)G,式于的值為 .
【答案】(1)證明見解析;(2);(3).
【解析】
(1)由∠DAB=∠CAE=α,可得∠DAC=∠BAE,根據(jù)“SAS”可證△ADC≌△ABE,可得DC=BE;
(2)由△ADC≌△ABE可得∠AEF=∠ACD,即可證點(diǎn)A,點(diǎn)E,點(diǎn)C,點(diǎn)F四點(diǎn)共圓,可得∠AFE=∠ACE,根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理可求∠AFE的度數(shù);
(3)由題意可得∠AFD==∠AFE,過(guò)點(diǎn)作AH⊥BE,可證△AGF≌△AHF,可得AG=AH,GF=HF,即可證Rt△AGC≌Rt△AHE,可得GC=HE,由EF﹣FC=HE+FH﹣FC=GC+FH﹣FC=GF+FC+FH﹣FC=2GF,可得的值.
(1)∵∠DAB=∠CAE=α,
∴∠DAB+∠BAC=∠CAE+∠BAC
即∠DAC=∠BAE,
又∵AD=AB,AC=AE
∴△ADC≌△ABE(SAS)
∴DC=BE
(2)∵△ADC≌△ABE
∴∠AEF=∠ACD
∴點(diǎn)A,點(diǎn)E,點(diǎn)C,點(diǎn)F四點(diǎn)共圓
∴∠AFE=∠ACE
∵AC=AE,∠DAB=∠CAE=α
∴∠ACE=
∴∠AFE=
(3)∵△ADC≌△ABE
∴∠ADC=∠ABE
∴點(diǎn)A,點(diǎn)D,點(diǎn)B,點(diǎn)F四點(diǎn)共圓
∴∠AFD=∠ABD
∵AB=AD,∠DAB=∠CAE=α
∴∠ABD=
∴∠AFD=
∴∠AFE=∠AFD
如圖,過(guò)點(diǎn)作AH⊥BE,
∵∠AFE=∠AFD,∠AGF=∠AHF,AF=AF
∴△AGF≌△AHF(AAS)
∴AG=AH,GF=HF,
∵AG=AH,AE=AC
∴Rt△AGC≌Rt△AHE(HL)
∴GC=HE
∵EF﹣FC=HE+FH﹣FC=GC+FH﹣FC=GF+FC+FH﹣FC=2GF,
∴==
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果店銷售某種水果,原來(lái)每箱售價(jià)元,每星期可賣箱.為了促銷,該水果店決定降價(jià)銷售.市場(chǎng)調(diào)查反映:每降價(jià)元,每星期可多賣箱.已知該水果每箱的進(jìn)價(jià)是元,設(shè)該水果每箱售價(jià)元,每星期的銷售量為箱.
求與之間的函數(shù)關(guān)系式;
當(dāng)每箱售價(jià)定為多少元時(shí),每星期的銷售利潤(rùn)最大,最大利潤(rùn)多少元?
若該水果店銷售這種水果每星期想要獲得不低于元的利潤(rùn),每星期至少要銷售該水果多少箱?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若拋物線L:y=ax2+bx+c(a,b,c是常數(shù),a≠0)的頂點(diǎn)P在直線l上,則稱該拋物線L與直線l具有“一帶一路關(guān)系”,此時(shí),拋物線L叫做直線l的“帶線”,直線l叫做拋物線L的“路線”.
⑴求“帶線”L:y=x2﹣2mx+m2+m﹣1(m是常數(shù))的“路線”l的解析式;
⑵若某“帶線”L:y=x2+bx+c的頂點(diǎn)在二次函數(shù)y=x2+4x+1的圖象上,它的“路線”l的解析式為y=2x+4.
①求此“帶線”L的解析式;
②設(shè)“帶線”L與“路線”l的另一②個(gè)交點(diǎn)為Q,點(diǎn)R在PQ之間的“帶線”L上,當(dāng)點(diǎn)R到“路線”l的距離最大時(shí),求點(diǎn)R的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩人在玩轉(zhuǎn)盤游戲時(shí),把轉(zhuǎn)盤A、B分別分成4等份、3等份,并在每一份內(nèi)標(biāo)上數(shù)字,如圖所示.游戲規(guī)定:轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤停止后,指針必須指到某一數(shù)字,否則重轉(zhuǎn).
(1)請(qǐng)用樹狀圖或列表法列出所有可能的結(jié)果;
(2)若指針?biāo)傅膬蓚(gè)數(shù)字都是方程x2-5x+6=0的解時(shí),則甲獲勝;若指針?biāo)傅膬蓚(gè)數(shù)字都不是方程x2-5x+6=0的解時(shí),則乙獲勝,問他們兩人誰(shuí)獲勝的概率大?請(qǐng)分析說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知長(zhǎng)方體的長(zhǎng)、寬、高分別是3x﹣4、2x和x,則它的表面積是_____;
(2)若3x3﹣x=1,則9x4+12x3﹣3x2﹣7x+2018=_____;
(3)若25x=2000,80y=2000,則的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組的兩個(gè)變量之間,成正比例的是( )
A.矩形的面積和它的一條邊長(zhǎng)B.圓的半徑的它的面積
C.工作效率一定,工作量與工作時(shí)間D.路程一定,速度與時(shí)間
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某化工車間發(fā)生有害氣體泄漏,自泄漏開始到完全控制利用了40min,之后將對(duì)泄漏有害氣體進(jìn)行清理,線段DE表示氣體泄漏時(shí)車間內(nèi)危險(xiǎn)檢測(cè)表顯示數(shù)據(jù)y與時(shí)間x(min)之間的函數(shù)關(guān)系(0≤x≤40),反比例函數(shù)y=對(duì)應(yīng)曲線EF表示氣體泄漏控制之后車間危險(xiǎn)檢測(cè)表顯示數(shù)據(jù)y與時(shí)間x(min)之間的函數(shù)關(guān)系(40≤x≤?).根據(jù)圖象解答下列問題:
(1)危險(xiǎn)檢測(cè)表在氣體泄漏之初顯示的數(shù)據(jù)是 ;
(2)求反比例函數(shù)y=的表達(dá)式,并確定車間內(nèi)危險(xiǎn)檢測(cè)表恢復(fù)到氣體泄漏之初數(shù)據(jù)時(shí)對(duì)應(yīng)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在杭州西湖風(fēng)景游船處,如圖,在離水面高度為5m的岸上,有人用繩子拉船靠岸,開始時(shí)繩子BC的長(zhǎng)為13m,此人以0.5m/s的速度收繩.10s后船移動(dòng)到點(diǎn)D的位置,問船向岸邊移動(dòng)了多少m?(假設(shè)繩子是直的,結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定:若y表示一個(gè)函數(shù),令M=|y|,我們則稱函數(shù)M為函數(shù)y的“幸福函數(shù)”.
(1)請(qǐng)寫出一次函數(shù)y=x﹣3的“幸福函數(shù)”M的解析式(解析式中不能含有絕對(duì)值);
(2)若一次函數(shù)y=與反比例函數(shù)y=(k>0)的“幸福函數(shù)”M有三個(gè)交點(diǎn),從左至右依次為A,B,C三點(diǎn),并且BC=,求點(diǎn)A的坐標(biāo);
(3)已知a、b為實(shí)數(shù),二次函數(shù)y=x2+ax+b的“幸福函數(shù)”M,M=2恒有三個(gè)不等的實(shí)數(shù)根.
①求b的最小值;
②若該方程的三個(gè)不等實(shí)根恰為一直角三角形的三條邊,求a和b的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com