【題目】若等腰三角形一腰上的高與另一腰的夾角是50°,則一個底角為______________

【答案】70°20°

【解析】

、首先根據(jù)題意,等腰三角形一腰上的高與另一腰的夾角為50°,分兩種情況討論,①如圖一,當(dāng)一腰上的高在三角形內(nèi)部時,即∠ABD=50°時,②如圖二,當(dāng)一腰上的高在三角形外部時,即∠ABD=50°時;然后根據(jù)等腰三角形的性質(zhì),分別解答出即可.

①如圖一

∵△ABC是等腰三角形,BDAC,ADB=90°,ABD=50°,
∴在直角ABD中,∠A=90°-50°=40°,

②如圖二,

∵△ABC是等腰三角形,BDAC,ADB=90°,ABD=50°,
∴在直角ABD中,∠BAD=90°-50°=40°,
又∵∠BAD=ABC+C,ABC=C,

故答案為:70°20°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,AB=AC,DE垂直平分AB,D為垂足交ACE.

1)若∠A=50°,求∠EBC的度數(shù);

2)若,BEC的周長是11,求ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列不等式化為“x>a”“x<a”的形式:

(1)x+6>5;  (2)3x>2x+2; (3)-2x+1<x+7; (4)-< .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】深圳市教育局在全市中小學(xué)開展“四點半活動”試點工作.某校為了了解學(xué)生參與“四點半活動”項目的情況,對初中的部分學(xué)生進(jìn)行了隨機調(diào)查,調(diào)查項目分為“科技創(chuàng)新”類、“體育活動”類、“藝術(shù)表演”類、“植物種植”類及“其它”類共五大類別,并根據(jù)調(diào)查的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答下面的問題

(1)請求出此次被調(diào)查學(xué)生的總?cè)藬?shù)人.
(2)根據(jù)以上信息,補全頻數(shù)分布直方圖.
(3)求出扇形統(tǒng)計圖中,“體育活動”α的圓心角等于度.
(4)如果本校初中部有1800名學(xué)生,請估計參與“藝術(shù)表演”類項目的學(xué)生大約多
少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB =AC=2,B = 40°,點D在線段BC上運動(不與點B,C重合),連接AD,作∠ADE = 40°,DE交線段AC于點E

(1)當(dāng)∠BDA = 115°時,∠BAD= °,DEC = °,當(dāng)點D從點B向點C運動時,∠BDA逐漸變 (填”) .

(2)當(dāng)DC等于多少時,ABD≌△DCE?請說明理由

(3)在點D的運動過程中,是否存在ADE是等腰三角形?若存在,請直接寫出此時∠BDA的度數(shù);若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在 中, , , ,點 的重心,則點 所在直線的距離等于( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,B=∠C=90°,EBC的中點,DE平分ADC.

(1)求證:AEDAB的平分線;

(2)探究:線段ADAB、CD之間有何數(shù)量關(guān)系?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察一列數(shù):1,2,4,8,16,… 我們發(fā)現(xiàn),這一列數(shù)從第二項起,每一項與它前一項的比都等于2. 一般地,如果一列數(shù)從第二項起,每一項與它前一項的比都等于同一個常數(shù),這一列數(shù)就叫做等比數(shù)列,這個常數(shù)就叫做等比數(shù)列的公比.

(1)等比數(shù)列3,-12,48,…的第4項是_________;

(2)如果一列數(shù),,,...是等比數(shù)列,且公比為. 那么有:,,,則=______ _,= (用的式子表示);

(3)一個等比數(shù)列的第2項是9,第4項是36,求它的公比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在面積都相等的所有矩形中,當(dāng)其中一個矩形的一邊長為1時,它的另一邊長為3.
(1)設(shè)矩形的相鄰兩邊長分別為x,y.
①求y關(guān)于x的函數(shù)表達(dá)式;
②當(dāng)y≥3時,求x的取值范圍;
(2)圓圓說其中有一個矩形的周長為6,方方說有一個矩形的周長為10,你認(rèn)為圓圓和方方的說法對嗎?為什么?

查看答案和解析>>

同步練習(xí)冊答案