【題目】七年級320名學生參加安全知識競賽活動,小明隨機調(diào)查了部分學生的成績(分數(shù)為整數(shù)),繪制了頻率分布表和頻數(shù)分布直方圖(不完整),請結(jié)合圖表信息回答下列問題:

成績(分)

頻數(shù)

71x76

2

76x81

8

81x86

12

86x91

10

91x96

6

96x101

2

1)補全頻數(shù)直方圖;

2)小明調(diào)查的學生人數(shù)是_______;頻率分布表的組距是_______;

3)七年級參加本次競賽活動,分數(shù)范圍內(nèi)的學生約有多少人.

【答案】(1)見解析;(2)40,5;(3)128人

【解析】

1)根據(jù)頻數(shù)分布表即可得出91x96的人數(shù)為6人,由此可補全頻數(shù)分布表;

2)根據(jù)頻數(shù)分布表將所有分數(shù)段的人數(shù)加在一起即可得調(diào)查的學生人數(shù),求出每個小組的兩個端點的距離即可求出組距;

3)用總?cè)藬?shù)乘以分數(shù)在的人數(shù)所占比例即可得出分數(shù)范圍內(nèi)的學生大致人數(shù).

解:(1)補全頻數(shù)直方圖如下

2)本次調(diào)查的學生人數(shù)為:2+8+12+10+6+2=40人,

頻率分布表的組距是:76-71=5,

故答案為:40,5

3,

∴分數(shù)范圍內(nèi)的學生約有128人.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:等邊△ABC的邊長為2,點D為平面內(nèi)一點,且BD= AD=2 ,則CD=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,A、B、C三地依次在一直線上,兩輛汽車甲、乙分別從AB兩地同時出發(fā)駛向C地,如圖②,是兩輛汽車行駛過程中到C地的距離skm)與行駛時間th)的關(guān)系圖象,其中折線段EFFG是甲車的圖象,線段OM是乙車的圖象.

1)圖②中,a的值為   ;點M的坐標為   ;

2)當甲車在乙車與B地的中點位置時,求行駛的時間t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,將兩塊三角板的直角頂點重合.

1)寫出以C為頂點的相等的角;

2)若∠ACB=150°,請直接寫出∠DCE的度數(shù);

3)寫出∠ACB與∠DCE之間所具有的數(shù)量關(guān)系;

4)當三角板ACD繞點C旋轉(zhuǎn)時,你所寫出的(3)中的關(guān)系是否變化?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D、E、F分別為BC、AD、BE的中點,若△BFD的面積為6,則 △ABC的面積等于_____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=BC,∠ABC=45°,點DAC的中點,連接BD,作AEBCE,交BD于點F,點GBC的中點,連接FG,過點BBHABFG的延長線于H

1)若AB=3,求AF的長;

2)求證;BH+2CE=AB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,O為原點,點A4,6).

1)如圖①,過點AAB軸,垂足為B,則三角形AOB的面積為 ;

2)如圖②,將線段OA向右平移3個單位長度,再向下平移1個單位長度,得到線段

①求四邊形的面積;

②若P是射線OA上的一動點,連接、,請畫出圖形,并直接寫出,的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面的文字,解答問題.

大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用來表示的小數(shù)部分,你同意小明的表示方法嗎?

事實上,小明的表示方法是有道理,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.

請解答:(1)若的整數(shù)部分為,小數(shù)部分為,求的值.

2)已知:,其中是整數(shù),且,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,ABCD,點EAB上,點GCD上,點 F 在直線 AB,CD之間,連接EF,F(xiàn)G,EF垂直于 FG,∠FGD =125°

(1)求出∠BEF的度數(shù);

(2)如圖 2,延長FEH,MFH的上方,連接MH,Q為直線 AB 上一點,且在直線 MH 的右側(cè), 連接 MQ,∠EHM=∠M +90°,求∠MQA 的度數(shù);

(3)如圖 3,S NB 上一點,T GD 上一點,作直線 ST,延長 GF AB 于點 N,P 為直線 ST 上一動點,請直接寫出∠PGN,∠SNP ∠GPN 的數(shù)量關(guān)系 .(題中所有角都是大于小于 180°的角)

查看答案和解析>>

同步練習冊答案