【題目】如圖,BD是⊙O的直徑,BA是⊙O的弦,過點(diǎn)A的切線CFBD延長線于點(diǎn)C

)若∠C25°,求∠BAF的度數(shù);

)若ABAC,CD2,求AB的長.

【答案】57.5°;(

【解析】

(Ⅰ)連接OAAD,根據(jù)切線的性質(zhì)得到OACF,求得∠OAC90°,根據(jù)三角形的內(nèi)角和得到∠COA65°,根據(jù)等腰三角形的性質(zhì)得到∠OAB32.5°,于是得到結(jié)論;

(Ⅱ)根據(jù)等腰三角形的性質(zhì)得到∠B=∠C,求得∠C30°,根據(jù)直角三角形的性質(zhì)得到OAOC,于是得到結(jié)論.

解:()連接OAAD,

CFO的切線,

OACF,

∴∠OAC90°,

∵∠C25°,

∴∠COA65°

∵∠COABOABOAOB,

∴∠BOAB,

∴∠OAB32.5°,

∴∠BAFOAFOAB90°32.5°57.5°;

ABAC,

∴∠BC

∵∠COA2∠B,

∴3∠C90°,

∴∠C30°,

OAOC

OAOD,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩塊等腰直角三角形紙片AOBCOD 按圖1所示放置,直角頂點(diǎn)重合在點(diǎn)O處,其中AB=3,CD=6.保持紙片AOB不動(dòng),將紙片COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α0°<α<90°),如圖2所示.當(dāng)BDCD在同一直線上(如圖3)時(shí),tanα的值等于(

A. B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,.半徑為的圓與邊相交于點(diǎn)與邊相交于點(diǎn)連結(jié)并延長,與線段的延長線交于點(diǎn)

1)當(dāng)時(shí),連結(jié)相似,求的長;

2)若的正切值;

3)若,設(shè)的周長為,求關(guān)于的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EABCDBC邊的中點(diǎn),BDAE相交于F,則ABF與四邊形ECDF的面積之比等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)yx+2的圖象與y軸交于A點(diǎn),與x軸交于B點(diǎn),P的半徑為,其圓心Px軸上運(yùn)動(dòng).

1)如圖1,當(dāng)圓心P的坐標(biāo)為(1,0)時(shí),求證:P與直線AB相切;

2)在(1)的條件下,點(diǎn)CP上在第一象限內(nèi)的一點(diǎn),過點(diǎn)CP的切線交直線AB于點(diǎn)D,且∠ADC120°,求D點(diǎn)的坐標(biāo);

3)如圖2,若P向左運(yùn)動(dòng),圓心P與點(diǎn)B重合,且P與線段AB交于E點(diǎn),與線段BO相交于F點(diǎn),G點(diǎn)為弧EF上一點(diǎn),直接寫出AG+OG的最小值 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年學(xué)校舉行足球聯(lián)賽,共賽17輪(即每隊(duì)均需參賽17場),記分辦法是:勝1場得3分,平1場得1分,負(fù)1場得0分.在這次足球比賽中,小虎足球隊(duì)得16分,且踢平場數(shù)是所負(fù)場數(shù)的整數(shù)倍,則小虎足球隊(duì)所負(fù)場數(shù)的情況有(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=BCADBC于點(diǎn)D,BEAC于點(diǎn)E,ADBE交于點(diǎn)FBHAB于點(diǎn)B,點(diǎn)MBC的中點(diǎn),連接FM并延長交BH于點(diǎn)H


1)如圖①所示,若∠ABC=30°,求證:DF+BH=BD;
2)如圖②所示,若∠ABC=45°,如圖③所示,若∠ABC=60°(點(diǎn)M與點(diǎn)D重合),猜想線段DF、BHBD之間又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直徑,點(diǎn)為半徑上異于點(diǎn)和點(diǎn)的一個(gè)點(diǎn),過點(diǎn)作與直徑垂直的弦,連接,作,點(diǎn),連接、,點(diǎn).

1)求證:的切線;

2)若的半徑為,,求

3)請猜想的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),豐富課余生活,決定開設(shè)以下體育課外活動(dòng)項(xiàng)目:A.籃球,B.乒乓球,C.羽毛球,D.足球.為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請回答下列問題:

1)這次被調(diào)查的學(xué)生共有   人,在扇形統(tǒng)計(jì)圖中B區(qū)域的圓心角度數(shù)為 ;

2)請你將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,學(xué)校決定從這四名同學(xué)中任選兩名參加市乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答).

查看答案和解析>>

同步練習(xí)冊答案